Guidelines

Renal Transplantation

4. REFERENCES

1.Guyatt, G.H., et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008. 336: 924.

https://pubmed.ncbi.nlm.nih.gov/18436948

2.Guyatt, G.H., et al. What is “quality of evidence” and why is it important to clinicians? BMJ, 2008. 336: 995.

https://pubmed.ncbi.nlm.nih.gov/18456631

3.Phillips B, et al. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. 1998.

https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/

4.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.

https://pubmed.ncbi.nlm.nih.gov/18467413

5.Boissier, R., et al. Benefits and harms of benign prostatic obstruction treatments in renal transplanted patients. PROSPERO, 2019. CRD42019136477.

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019136477

6.Boissier, R., et al. Effectiveness of interventions on nephrolithiasis in transplanted kidney. PROSPERO, 2019. CRD42019136474.

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019136474

7.Lennerling, A., et al. Living organ donation practices in Europe - results from an online survey. Transpl Int, 2013. 26: 145.

https://pubmed.ncbi.nlm.nih.gov/23198985

8.Antcliffe, D., et al. A meta-analysis of mini-open versus standard open and laparoscopic living donor nephrectomy. Transpl Int, 2009. 22: 463.

https://pubmed.ncbi.nlm.nih.gov/19175543

9.Greco, F., et al. Laparoscopic living-donor nephrectomy: analysis of the existing literature. Eur Urol, 2010. 58: 498.

https://pubmed.ncbi.nlm.nih.gov/19175543

10.Wilson, C.H., et al. Laparoscopic versus open nephrectomy for live kidney donors. Cochrane Database Syst Rev, 2011: CD006124.

https://pubmed.ncbi.nlm.nih.gov/22071829

11.Yuan, H., et al. The safety and efficacy of laparoscopic donor nephrectomy for renal transplantation: an updated meta-analysis. Transplant Proc, 2013. 45: 65.

https://pubmed.ncbi.nlm.nih.gov/23375276

12.Serrano, O.K., et al. Evolution of Living Donor Nephrectomy at a Single Center: Long-Term Outcomes with 4 Different Techniques in Greater Than 4000 Donors over 50 Years. Transplantation, 2016. 100: 1299.

https://pubmed.ncbi.nlm.nih.gov/27136265

13.Breda, A., et al. Mini-laparoscopic live donor nephrectomy with the use of 3-mm instruments and laparoscope. World J Urol, 2015. 33: 707.

https://pubmed.ncbi.nlm.nih.gov/25182807

14.Elmaraezy, A., et al. Should hand-assisted retroperitoneoscopic nephrectomy replace the standard laparoscopic technique for living donor nephrectomy? A meta-analysis. International Journal of Surgery, 2017. 40: 83.

https://pubmed.ncbi.nlm.nih.gov/28216391

15.Creta, M., et al. Donor and Recipient Outcomes following Robotic-Assisted Laparoscopic Living Donor Nephrectomy: A Systematic Review. Biomed Res Int, 2019. 2019: 1729138.

https://pubmed.ncbi.nlm.nih.gov/31143770/

16.Lentine, K.L., et al. Perioperative Complications After Living Kidney Donation: A National Study. Am J Transplant, 2016. 16: 1848.

https://pubmed.ncbi.nlm.nih.gov/26700551

17.Wang, H., et al. Robot-assisted laparoscopic vs laparoscopic donor nephrectomy in renal transplantation: A meta-analysis. Clin Transplant, 2019. 33: e13451.

https://pubmed.ncbi.nlm.nih.gov/30461073/

18.Autorino, R., et al. Laparoendoscopic single-site (LESS) vs laparoscopic living-donor nephrectomy: a systematic review and meta-analysis. BJU Int, 2015. 115: 206.

https://pubmed.ncbi.nlm.nih.gov/24588876

19.Gupta, A., et al. Laparoendoscopic single-site donor nephrectomy (LESS-DN) versus standard laparoscopic donor nephrectomy [Systematic Review]. Cochrane Database Syst Rev, 2016. 6: 6.

https://pubmed.ncbi.nlm.nih.gov/27230690

20.Alcaraz, A., et al. Feasibility of transvaginal natural orifice transluminal endoscopic surgery-assisted living donor nephrectomy: is kidney vaginal delivery the approach of the future? Eur Urol, 2011.
59: 1019.

https://pubmed.ncbi.nlm.nih.gov/21458151

21.Liu, N., et al. Maximizing the donor pool: left versus right laparoscopic live donor nephrectomy--systematic review and meta-analysis. Int Urol Nephrol, 2014. 46: 1511.

https://pubmed.ncbi.nlm.nih.gov/27230690/24595603

22.Khalil, A., et al. Trends and outcomes in right vs. left living donor nephrectomy: An analysis of the OPTN/UNOS database of donor and recipient outcomes - should we be doing more right-sided nephrectomies? Clinical Transplantation, 2016. 30: 145.

https://pubmed.ncbi.nlm.nih.gov/26589133

23.Hsi, R.S., et al. Analysis of techniques to secure the renal hilum during laparoscopic donor nephrectomy: review of the FDA database. Urology, 2009. 74: 142.

24.Hsi, R.S., et al. Mechanisms of hemostatic failure during laparoscopic nephrectomy: review of Food and Drug Administration database. Urology, 2007. 70: 888.

https://pubmed.ncbi.nlm.nih.gov/19406458

25.Ponsky, L., et al. The Hem-o-lok clip is safe for laparoscopic nephrectomy: a multi-institutional review. Urology, 2008. 71: 593.

https://pubmed.ncbi.nlm.nih.gov/18295866

26.Allen, M.B., et al. Donor hemodynamics as a predictor of outcomes after kidney transplantation from donors after cardiac death. Am J Transplant, 2016. 16: 181.

https://pubmed.ncbi.nlm.nih.gov/26361242

27.Heylen, L., et al. The duration of asystolic ischemia determines the risk of graft failure after circulatory-dead donor kidney transplantation: A Eurotransplant cohort study. Am J Transplant, 2018. 18: 881.

https://pubmed.ncbi.nlm.nih.gov/28980391

28.Osband, A.J., et al. Extraction Time of Kidneys from Deceased Donors and Impact on Outcomes. Am J of Transplant, 2016. 16: 700.

https://pubmed.ncbi.nlm.nih.gov/26414911

29.Redfield, R.R., et al. Predictors and outcomes of delayed graft function after living-donor kidney transplantation. Transpl Int, 2016. 29: 81.

https://pubmed.ncbi.nlm.nih.gov/26432507

30.Irish, W.D., et al. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am J Transplant, 2010. 10: 2279.

https://pubmed.ncbi.nlm.nih.gov/20883559

31.de Boer, J., et al. Eurotransplant randomized multicenter kidney graft preservation study comparing HTK with UW and Euro-Collins. Transpl Int, 1999. 12: 447.

https://pubmed.ncbi.nlm.nih.gov/10654357

32.Parsons, R.F., et al. Preservation solutions for static cold storage of abdominal allografts: which is best? Curr Opin Organ Transplant, 2014. 19: 100.

https://pubmed.ncbi.nlm.nih.gov/24553501

33.Tillou, X., et al. Comparison of UW and Celsior: long-term results in kidney transplantation. Ann Transplant, 2013. 18: 146.

https://pubmed.ncbi.nlm.nih.gov/23792514

34.Barnett, D., Black, D. W., Buckley, B., Campbell, D., Clarke, P.,. Machine perfusion systems and cold static storage of kidneys from deceased donors. NICE Guidelines. Technology appraisal guidance 2009.

https://www.nice.org.uk/guidance/ta165

35.Kay, M.D., et al. Comparison of preservation solutions in an experimental model of organ cooling in kidney transplantation. Br J Surg, 2009. 96: 1215.

https://pubmed.ncbi.nlm.nih.gov/19787767

36.Bond, M., et al. The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model. Health Technol Assess, 2009. 13: iii.

https://pubmed.ncbi.nlm.nih.gov/19674537

37.Lledo-Garcia, E., et al. Spanish consensus document for acceptance and rejection of kidneys from expanded criteria donors. Clin Transplant, 2014. 28: 1155.

https://pubmed.ncbi.nlm.nih.gov/25109314

38.Johnston, T.D., et al. Sensitivity of expanded-criteria donor kidneys to cold ischaemia time. Clin Transplant, 2004. 18 Suppl 12: 28.

https://pubmed.ncbi.nlm.nih.gov/15217404

39.Peters-Sengers, H., et al. Impact of Cold Ischemia Time on Outcomes of Deceased Donor Kidney Transplantation: An Analysis of a National Registry. Transplant Direct, 2019. 5: e448.

https://pubmed.ncbi.nlm.nih.gov/31165083/

40.Summers, D.M., et al. Analysis of factors that affect outcome after transplantation of kidneys donated after cardiac death in the UK: a cohort study. Lancet, 2010. 376: 1303.

https://pubmed.ncbi.nlm.nih.gov/20727576

41.Aubert, O., et al. Long term outcomes of transplantation using kidneys from expanded criteria donors: prospective, population based cohort study. BMJ, 2015. 351: h3557.

https://pubmed.ncbi.nlm.nih.gov/26232393

42.Kayler, L.K., et al. Impact of cold ischemia time on graft survival among ECD transplant recipients: a paired kidney analysis. Am J Transplant, 2011. 11: 2647.

https://pubmed.ncbi.nlm.nih.gov/21906257

43.Chatauret, N., et al. Preservation strategies to reduce ischemic injury in kidney transplantation: pharmacological and genetic approaches. Curr Opin Organ Transplant, 2011. 16: 180.

https://pubmed.ncbi.nlm.nih.gov/21415820

44.Jochmans, I., et al. Past, Present, and Future of Dynamic Kidney and Liver Preservation and Resuscitation. Am J Transplant, 2016. 16: 2545.

https://pubmed.ncbi.nlm.nih.gov/26946212

45.O’Callaghan, J.M., et al. Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes. Br J Surg, 2013. 100: 991.

https://pubmed.ncbi.nlm.nih.gov/23754643

46.Martinez Arcos, L., et al. Functional Results of Renal Preservation in Hypothermic Pulsatile Machine Perfusion Versus Cold Preservation: Systematic Review and Meta-Analysis of Clinical Trials. Transplant Proc, 2018. 50: 24.

https://pubmed.ncbi.nlm.nih.gov/29407316/

47.Tingle, S.J., et al. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev, 2019. 3: CD011671.

https://pubmed.ncbi.nlm.nih.gov/30875082

48.Jochmans, I., et al. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann Surg, 2010. 252: 756.

https://pubmed.ncbi.nlm.nih.gov/21037431

49.Reznik, O.N., et al. Machine perfusion as a tool to select kidneys recovered from uncontrolled donors after cardiac death. Transplant Proc, 2008. 40: 1023.

https://pubmed.ncbi.nlm.nih.gov/18555105

50.Jochmans, I., et al. Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transpl Int, 2015. 28: 665.

https://pubmed.ncbi.nlm.nih.gov/25630347

51.Treckmann, J., et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transpl Int, 2011. 24: 548.

https://pubmed.ncbi.nlm.nih.gov/21332580

52.Gill, J., et al. Pulsatile perfusion reduces the risk of delayed graft function in deceased donor kidney transplants, irrespective of donor type and cold ischemic time. Transplantation, 2014. 97: 668.

https://pubmed.ncbi.nlm.nih.gov/24637865

53.Matsuno, N., et al. Machine perfusion preservation for kidney grafts with a high creatinine from uncontrolled donation after cardiac death. Transplant Proc, 2010. 42: 155.

https://pubmed.ncbi.nlm.nih.gov/20172304

54.Jochmans, I., et al. Graft quality assessment in kidney transplantation: not an exact science yet! Curr Opin Organ Transplant, 2011. 16: 174.

https://pubmed.ncbi.nlm.nih.gov/21383549

55.Jochmans, I., et al. Oxygenated Hypothermic Machine Perfusion of Kidneys Donated after Circulatory Death: An International Randomised Controlled Trial [abstract]. Am J Transplant, 2019. 19.

https://atcmeetingabstracts.com/abstract/oxygenated-hypothermic-machine-perfusion-of-kidneys-donated-after-circulatory-death-an-international-randomised-controlled-trial/

56.Hosgood, S.A., et al. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int, 2015. 28: 657.

https://pubmed.ncbi.nlm.nih.gov/24629095

57.Reddy, S.P., et al. Normothermic perfusion: a mini-review. Transplantation, 2009. 87: 631.

https://pubmed.ncbi.nlm.nih.gov/19295304

58.Antoine, C., et al. Kidney Transplant From Uncontrolled Donation After Circulatory Death: Contribution of Normothermic Regional Perfusion. Transplantation, 2020. 104: 130.

https://pubmed.ncbi.nlm.nih.gov/30985577

59.Reznik, O., et al. Kidney from uncontrolled donors after cardiac death with one hour warm ischemic time: resuscitation by extracorporal normothermic abdominal perfusion “in situ” by leukocytes-free oxygenated blood. Clin Transplant, 2011. 25: 511.

https://pubmed.ncbi.nlm.nih.gov/20973824

60.Hosgood, S.A., et al. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. Br J Surg, 2015. 102: 1433.

https://pubmed.ncbi.nlm.nih.gov/26313559

61.Hoyer, D.P., et al. Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl Int, 2014. 27: 1097.

https://pubmed.ncbi.nlm.nih.gov/24963744

62.Naesens, M. Zero-Time Renal Transplant Biopsies: A Comprehensive Review. Transplantation, 2016. 100: 1425.

https://pubmed.ncbi.nlm.nih.gov/26599490

63.Kasiske, B.L., et al. The role of procurement biopsies in acceptance decisions for kidneys retrieved for transplant. Clin J Am Soc Nephrol, 2014. 9: 562.

https://pubmed.ncbi.nlm.nih.gov/24558053

64.Marrero, W.J., et al. Predictors of Deceased Donor Kidney Discard in the United States. Transplantation, 2016.

https://pubmed.ncbi.nlm.nih.gov/27163541

65.Sung, R.S., et al. Determinants of discard of expanded criteria donor kidneys: impact of biopsy and machine perfusion. Am J Transplant, 2008. 8: 783.

https://pubmed.ncbi.nlm.nih.gov/18294347

66.Wang, C.J., et al. The Donor Kidney Biopsy and Its Implications in Predicting Graft Outcomes:
A Systematic Review. Am J Transplant, 2015. 15: 1903.

https://pubmed.ncbi.nlm.nih.gov/25772854

67.Hopfer, H., et al. Assessment of donor biopsies. Curr Opin Organ Transplant, 2013. 18: 306.

https://pubmed.ncbi.nlm.nih.gov/23492644

68.Gaber, L.W., et al. Glomerulosclerosis as a determinant of posttransplant function of older donor renal allografts. Transplantation, 1995. 60: 334.

https://pubmed.ncbi.nlm.nih.gov/7652761

69.Solez, K., et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant, 2008. 8: 753.

https://pubmed.ncbi.nlm.nih.gov/18294345

70.De Vusser, K., et al. The predictive value of kidney allograft baseline biopsies for long-term graft survival. J Am Soc Nephrol, 2013. 24: 1913.

https://pubmed.ncbi.nlm.nih.gov/23949799

71.Anglicheau, D., et al. A simple clinico-histopathological composite scoring system is highly predictive of graft outcomes in marginal donors. Am J Transplant, 2008. 8: 2325.

https://pubmed.ncbi.nlm.nih.gov/18785957

72.Balaz, P., et al. Identification of expanded-criteria donor kidney grafts at lower risk of delayed graft function. Transplantation, 2013. 96: 633.

https://pubmed.ncbi.nlm.nih.gov/23912171

73.Lopes, J.A., et al. Evaluation of pre-implantation kidney biopsies: comparison of Banff criteria to a morphometric approach. Kidney Int, 2005. 67: 1595.

https://pubmed.ncbi.nlm.nih.gov/15780116

74.Munivenkatappa, R.B., et al. The Maryland aggregate pathology index: a deceased donor kidney biopsy scoring system for predicting graft failure. Am J Transplant, 2008. 8: 2316.

https://pubmed.ncbi.nlm.nih.gov/18801024

75.Liapis, H., et al. Banff Histopathological Consensus Criteria for Preimplantation Kidney Biopsies. Am J Transplant, 2016.

https://pubmed.ncbi.nlm.nih.gov/27333454

76.Haas, M. Donor kidney biopsies: pathology matters, and so does the pathologist. Kidney Int, 2014. 85: 1016.

https://pubmed.ncbi.nlm.nih.gov/24786876

77.Azancot, M.A., et al. The reproducibility and predictive value on outcome of renal biopsies from expanded criteria donors. Kidney Int, 2014. 85: 1161.

https://pubmed.ncbi.nlm.nih.gov/24284518

78.Peters, B., et al. Sixteen Gauge biopsy needles are better and safer than 18 Gauge in native and transplant kidney biopsies. Acta Radiol, 2017. 58: 240.

https://pubmed.ncbi.nlm.nih.gov/27055922

79.Haas, M., et al. Arteriosclerosis in kidneys from healthy live donors: comparison of wedge and needle core perioperative biopsies. Arch Pathol Lab Med, 2008. 132: 37.

https://pubmed.ncbi.nlm.nih.gov/18181671

80.Mazzucco, G., et al. The reliability of pre-transplant donor renal biopsies (PTDB) in predicting the kidney state. A comparative single-centre study on 154 untransplanted kidneys. Nephrol Dial Transplant, 2010. 25: 3401.

https://pubmed.ncbi.nlm.nih.gov/20356979

81.Wang, H.J., et al. On the influence of sample size on the prognostic accuracy and reproducibility of renal transplant biopsy. Nephrol Dial Transplant, 1998. 13: 165.

https://pubmed.ncbi.nlm.nih.gov/9481734

82.Yushkov, Y., et al. Optimized technique in needle biopsy protocol shown to be of greater sensitivity and accuracy compared to wedge biopsy. Transplant Proc, 2010. 42: 2493.

https://pubmed.ncbi.nlm.nih.gov/20832530

83.Muruve, N.A., et al. Are wedge biopsies of cadaveric kidneys obtained at procurement reliable? Transplantation, 2000. 69: 2384.

https://pubmed.ncbi.nlm.nih.gov/10868645

84.Randhawa, P. Role of donor kidney biopsies in renal transplantation. Transplantation, 2001. 71: 1361.

https://pubmed.ncbi.nlm.nih.gov/11391219

85.Bago-Horvath, Z., et al. The cutting (w)edge--comparative evaluation of renal baseline biopsies obtained by two different methods. Nephrol Dial Transplant, 2012. 27: 3241.

https://pubmed.ncbi.nlm.nih.gov/22492825

86.Jankovic, Z. Anaesthesia for living-donor renal transplant. Current Anaesthesia & Critical Care, 2008. 19: 175.

https://www.researchgate.net/publication/270283251_Jankovic_Z_Anaesthesia_for_living-donor_renal_transplant_Curr_Anaesth_Crit_Care_2008_19_3_175-80

87.Karmarkar, S., et al. Kidney Transplantation. Anaesthesia And Intensive Care Medicine 2009. 10.5.

https://www.anaesthesiajournal.co.uk/article/S1472-0299(12)00070-7/abstract

88.Abramowicz, D., et al. European Renal Best Practice Guideline on kidney donor and recipient evaluation and perioperative care. Nephrol Dial Transplant, 2015. 30: 1790.

https://pubmed.ncbi.nlm.nih.gov/25007790

89.Van Loo, A.A., et al. Pretransplantation hemodialysis strategy influences early renal graft function.
J Am Soc Nephrol, 1998. 9: 473.

https://pubmed.ncbi.nlm.nih.gov/9513911

90.Task Force for Preoperative Cardiac Risk, A., et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur Heart J, 2009.
30: 2769.

https://pubmed.ncbi.nlm.nih.gov/24126879

91.Douketis, J.D., et al. Perioperative Management of Antithrombotic Therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 2012. 141.

https://pubmed.ncbi.nlm.nih.gov/22315266

92.Benahmed, A., et al. Ticlopidine and clopidogrel, sometimes combined with aspirin, only minimally increase the surgical risk in renal transplantation: A case-control study. Nephrol Dial Transplant, 2014. 29: 463.

https://pubmed.ncbi.nlm.nih.gov/24275542

93.Osman, Y., et al. Necessity of Routine Postoperative Heparinization in Non-Risky Live-Donor Renal Transplantation: Results of a Prospective Randomized Trial. Urology, 2007. 69: 647.

https://pubmed.ncbi.nlm.nih.gov/17445644

94.Orlando, G., et al. One-shot versus multidose perioperative antibiotic prophylaxis after kidney transplantation: a randomized, controlled clinical trial. Surgery, 2015. 157: 104.

https://pubmed.ncbi.nlm.nih.gov/25304836

95.Choi, S.U., et al. Clinical significance of prophylactic antibiotics in renal transplantation. Transplant Proc, 2013. 45: 1392.

https://pubmed.ncbi.nlm.nih.gov/23726580

96.O’Malley, C.M., et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg, 2005. 100: 1518.

https://pubmed.ncbi.nlm.nih.gov/15845718

97.Othman, M.M., et al. The impact of timing of maximal crystalloid hydration on early graft function during kidney transplantation. Anesth Analg, 2010. 110: 1440.

https://pubmed.ncbi.nlm.nih.gov/20418304

98.Dalton, R.S., et al. Physiologic impact of low-dose dopamine on renal function in the early post renal transplant period. Transplantation, 2005. 79: 1561.

https://pubmed.ncbi.nlm.nih.gov/15940046

99.Ciapetti, M., et al. Low-dose dopamine in kidney transplantation. Transplant Proc, 2009. 41: 4165.

https://pubmed.ncbi.nlm.nih.gov/20005360

100.Hanif, F., et al. Outcome of renal transplantation with and without intra-operative diuretics. Int
J Surg, 2011. 9: 460.

https://pubmed.ncbi.nlm.nih.gov/21600319

101.Valeriani, G., et al. Bench surgery in right kidney transplantation. Transplant Proc, 2010. 42: 1120.

https://pubmed.ncbi.nlm.nih.gov/20534239

102.Wagenaar, S., et al. Minimally Invasive, Laparoscopic, and Robotic-assisted Techniques Versus Open Techniques for Kidney Transplant Recipients: A Systematic Review. Eur Urol, 2017. 72: 205.

https://pubmed.ncbi.nlm.nih.gov/28262412

103.Chedid, M.F., et al. Living donor kidney transplantation using laparoscopically procured multiple renal artery kidneys and right kidneys. J Am Coll Surg, 2013. 217: 144.

https://pubmed.ncbi.nlm.nih.gov/23791283

104.Kaminska, D., et al. The influence of warm ischemia elimination on kidney injury during transplantation - clinical and molecular study. Sci Rep, 2016. 6: 36118.

https://pubmed.ncbi.nlm.nih.gov/27808277

105.Ozdemir-van Brunschot, D.M., et al. Is the Reluctance for the Implantation of Right Donor Kidneys Justified? World J Surg, 2016. 40: 471.

https://pubmed.ncbi.nlm.nih.gov/26319261

106.Khalil, A., et al. Trends and outcomes in right vs. left living donor nephrectomy: an analysis of the OPTN/UNOS database of donor and recipient outcomes--should we be doing more right-sided nephrectomies? Clin Transplant, 2016. 30: 145.

https://pubmed.ncbi.nlm.nih.gov/26589133

107.Hsu, J.W., et al. Increased early graft failure in right-sided living donor nephrectomy. Transplantation, 2011. 91: 108.

https://pubmed.ncbi.nlm.nih.gov/21441855

108.Kulkarni, S., et al. Outcomes From Right Versus Left Deceased-Donor Kidney Transplants: A US National Cohort Study. Am J Kidney Dis, 2020. 75: 725.

https://pubmed.ncbi.nlm.nih.gov/31812448/

109.Wang, K., et al. Right Versus Left Laparoscopic Living-Donor Nephrectomy: A Meta-Analysis. Exp Clin Transplant, 2015. 13: 214.

https://pubmed.ncbi.nlm.nih.gov/26086831

110.Ciudin, A., et al. Transposition of iliac vessels in implantation of right living donor kidneys. Transplant Proc, 2012. 44: 2945.

https://pubmed.ncbi.nlm.nih.gov/23195003

111.Phelan, P.J., et al. Left versus right deceased donor renal allograft outcome. Transpl Int, 2009.
22: 1159.

https://pubmed.ncbi.nlm.nih.gov/19891044

112.Feng, J.Y., et al. Renal vein lengthening using gonadal vein reduces surgical difficulty in living-donor kidney transplantation. World J Surg, 2012. 36: 468.

https://pubmed.ncbi.nlm.nih.gov/21882021

113.Nghiem, D.D. Use of spiral vein graft in living donor renal transplantation. Clin Transplant, 2008. 22: 719.

https://pubmed.ncbi.nlm.nih.gov/18673376

114.Matheus, W.E., et al. Kidney transplant anastomosis: internal or external iliac artery? Urol J, 2009.
6: 260.

https://pubmed.ncbi.nlm.nih.gov/20027554

115.El-Sherbiny, M., et al. The use of the inferior epigastric artery for accessory lower polar artery revascularization in live donor renal transplantation. Int Urol Nephrol, 2008. 40: 283.

https://pubmed.ncbi.nlm.nih.gov/17721826

116.Firmin, L.C., et al. The use of explanted internal iliac artery grafts in renal transplants with multiple arteries. Transplantation, 2010. 89: 766.

https://pubmed.ncbi.nlm.nih.gov/20308866

117.Oertl, A.J., et al. Saphenous vein interposition as a salvage technique for complex vascular situations during renal transplantation. Transplant Proc, 2007. 39: 140.

https://pubmed.ncbi.nlm.nih.gov/17275492

118.Tozzi, M., et al. Treatment of aortoiliac occlusive or dilatative disease concomitant with kidney transplantation: how and when? Int J Surg, 2013. 11 Suppl 1: S115.

https://pubmed.ncbi.nlm.nih.gov/24380542

119.Franchin, M., et al. ePTFE suture is an effective tool for vascular anastomosis in kidney transplantation. Ital J Vasc Endovasc Surg, 2015. 22: 61.

https://www.researchgate.net/publication/285219004_ePTFE_suture_is_an_effective_tool_for_vascular_anastomosis_in_kidney_transplantation

120.Izquierdo, L., et al. Third and fourth kidney transplant: still a reasonable option. Transplant Proc, 2010. 42: 2498.

https://pubmed.ncbi.nlm.nih.gov/20832531

121.Blanco, M., et al. Third kidney transplantation: a permanent medical-surgical challenge. Transplant Proc, 2009. 41: 2366.

https://pubmed.ncbi.nlm.nih.gov/19715921

122.Nourbala, M.H., et al. Our experience with third renal transplantation: results, surgical techniques and complications. Int J Urol, 2007. 14: 1057.

https://pubmed.ncbi.nlm.nih.gov/18036037

123.Musquera, M., et al. Orthotopic kidney transplantation: an alternative surgical technique in selected patients. Eur Urol, 2010. 58: 927.

https://pubmed.ncbi.nlm.nih.gov/20888120

124.Heylen, L., et al. The Impact of Anastomosis Time During Kidney Transplantation on Graft Loss: A Eurotransplant Cohort Study. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2017. 17: 724.

https://pubmed.ncbi.nlm.nih.gov/27593738

125.Weissenbacher, A., et al. The faster the better: anastomosis time influences patient survival after deceased donor kidney transplantation. Transpl Int, 2015. 28: 535.

https://pubmed.ncbi.nlm.nih.gov/25557890

126.McCulloch, P., et al. IDEAL framework for surgical innovation 1: the idea and development stages. BMJ, 2013. 346: f3012.

https://pubmed.ncbi.nlm.nih.gov/23778427

127.Breda, A., et al. Robot-assisted Kidney Transplantation: The European Experience [Figure presented]. Eur Urol, 2018. 73: 273.

https://www.europeanurology.com/article/S0302-2838(17)30721-2/pdf

128.Gallioli, A., et al. Learning Curve in Robot-assisted Kidney Transplantation: Results from the European Robotic Urological Society Working Group. Eur Urol, 2020.

https://www.europeanurology.com/article/S0302-2838(19)30947-9/fulltext

129.Tzvetanov, I.G., et al. Robotic kidney transplantation in the obese patient: 10-year experience from a single center. Am J Transplant, 2020. 20: 430.

https://pubmed.ncbi.nlm.nih.gov/31571369

130.Basu, A., et al. Adult dual kidney transplantation. Curr Opin Organ Transplant, 2007. 12: 379.

https://journals.lww.com/co-transplantation/Abstract/2007/08000/Adult_dual_kidney_transplantation.10.aspx

131.Haider, H.H., et al. Dual kidney transplantation using midline extraperitoneal approach: description of a technique. Transplant Proc, 2007. 39: 1118.

https://pubmed.ncbi.nlm.nih.gov/17524907

132.Ekser, B., et al. Technical aspects of unilateral dual kidney transplantation from expanded criteria donors: experience of 100 patients. Am J Transplant, 2010. 10: 2000.

https://pubmed.ncbi.nlm.nih.gov/20636454

133.Nghiem, D.D. Simultaneous double adult kidney transplantation using single arterial and venous anastomoses. Urology, 2006. 67: 1076.

https://pubmed.ncbi.nlm.nih.gov/16581114

134.Veroux, P., et al. Two-as-one monolateral dual kidney transplantation. Urology, 2011. 77: 227.

https://pubmed.ncbi.nlm.nih.gov/20399490

135.Salehipour, M., et al. En-bloc Transplantation: an Eligible Technique for Unilateral Dual Kidney Transplantation. Int J Organ Transplant Med, 2012. 3: 111.

https://pubmed.ncbi.nlm.nih.gov/25013633

136.Rigotti, P., et al. A single-center experience with 200 dual kidney transplantations. Clin Transplant, 2014. 28: 1433.

https://pubmed.ncbi.nlm.nih.gov/25297945

137.Al-Shraideh, Y., et al. Single vs dual (en bloc) kidney transplants from donors </= 5 years of age: A single center experience. World J Transplant, 2016. 6: 239.

https://pubmed.ncbi.nlm.nih.gov/27011923

138.Alberts, V.P., et al. Ureterovesical anastomotic techniques for kidney transplantation: a systematic review and meta-analysis. Transpl Int, 2014. 27: 593.

https://pubmed.ncbi.nlm.nih.gov/24606191

139.Slagt, I.K., et al. A randomized controlled trial comparing intravesical to extravesical ureteroneocystostomy in living donor kidney transplantation recipients. Kidney Int, 2014. 85: 471.

https://pubmed.ncbi.nlm.nih.gov/24284515

140.Timsit, M.O., et al. Should routine pyeloureterostomy be advocated in adult kidney transplantation? A prospective study of 283 recipients. J Urol, 2010. 184: 2043.

https://pubmed.ncbi.nlm.nih.gov/20850818

141.Suttle, T., et al. Comparison of urologic complications between ureteroneocystostomy and ureteroureterostomy in renal transplant: A meta-analysis. Exp Clin Transplant, 2016. 14: 276.

https://pubmed.ncbi.nlm.nih.gov/26925612

142.Dadkhah, F., et al. Modified ureteroneocystostomy in kidney transplantation to facilitate endoscopic management of subsequent urological complications. Int Urol Nephrol, 2010. 42: 285.

https://pubmed.ncbi.nlm.nih.gov/19760513

143.Kehinde, E.O., et al. Complications associated with using nonabsorbable sutures for ureteroneocystostomy in renal transplant operations. Transplant Proc, 2000. 32: 1917.

https://pubmed.ncbi.nlm.nih.gov/11119999

144.Wilson, C.H., et al. Routine intraoperative ureteric stenting for kidney transplant recipients. Cochrane Database Syst Rev, 2013: CD004925.

https://pubmed.ncbi.nlm.nih.gov/23771708

145.Tavakoli, A., et al. Impact of stents on urological complications and health care expenditure in renal transplant recipients: results of a prospective, randomized clinical trial. J Urol, 2007. 177: 2260.

https://pubmed.ncbi.nlm.nih.gov/17509336

146.Cai, J.F., et al. Meta-analysis of Early Versus Late Ureteric Stent Removal After Kidney Transplantation. Transplant Proc, 2018. 50: 3411.

https://pubmed.ncbi.nlm.nih.gov/30577214

147.Visser, I.J., et al. Timing of Ureteric Stent Removal and Occurrence of Urological Complications after Kidney Transplantation: A Systematic Review and Meta-Analysis. J Clin Med, 2019. 8.

https://pubmed.ncbi.nlm.nih.gov/30577214

148.Patel, P., et al. Prophylactic Ureteric Stents in Renal Transplant Recipients: A Multicenter Randomized Controlled Trial of Early Versus Late Removal. Am J Transplant, 2017. 17: 2129.

https://pubmed.ncbi.nlm.nih.gov/28188678

149.Heidari, M., et al. Transplantation of kidneys with duplicated ureters. Scand J Urol Nephrol, 2010. 44: 337.

https://pubmed.ncbi.nlm.nih.gov/20653492

150.Alberts, V.P., et al. Duplicated ureters and renal transplantation: a case-control study and review of the literature. Transplant Proc, 2013. 45: 3239.

https://pubmed.ncbi.nlm.nih.gov/24182792

151.Surange, R.S., et al. Kidney transplantation into an ileal conduit: a single center experience of
59 cases. J Urol, 2003. 170: 1727.

https://pubmed.ncbi.nlm.nih.gov/14532763

152.Kortram, K., et al. Perioperative Events and Complications in Minimally Invasive Live Donor Nephrectomy: A Systematic Review and Meta-Analysis. Transplantation, 2016.

https://pubmed.ncbi.nlm.nih.gov/27428715

153.Segev, D.L., et al. Perioperative mortality and long-term survival following live kidney donation. JAMA, 2010. 303: 959.

https://pubmed.ncbi.nlm.nih.gov/20215610

154.Chu, K.H., et al. Long-term outcomes of living kidney donors: a single centre experience of
29 years. Nephrology (Carlton), 2012. 17: 85.

https://pubmed.ncbi.nlm.nih.gov/21919999

155.Fehrman-Ekholm, I., et al. Post-nephrectomy development of renal function in living kidney donors: a cross-sectional retrospective study. Nephrol Dial Transplant, 2011. 26: 2377.

https://pubmed.ncbi.nlm.nih.gov/21459783

156.Li, S.S., et al. A meta-analysis of renal outcomes in living kidney donors. [Review]. Medicine, 2016. 95.

https://pubmed.ncbi.nlm.nih.gov/27310964

157.Thiel, G.T., et al. Investigating kidney donation as a risk factor for hypertension and microalbuminuria: findings from the Swiss prospective follow-up of living kidney donors. BMJ Open, 2016. 6: 22.

https://pubmed.ncbi.nlm.nih.gov/27006347

158.Ibrahim, H.N., et al. Long-term consequences of kidney donation. N Engl J Med, 2009. 360: 459.

https://pubmed.ncbi.nlm.nih.gov/27006347

159.Li, S.S., et al. A meta-analysis of renal outcomes in living kidney donors. Medicine (Baltimore), 2016. 95: e3847.

https://pubmed.ncbi.nlm.nih.gov/27310964

160.Matas, A.J., et al. Causes and timing of end-stage renal disease after living kidney donation. Am
J Transplant, 2018. 18: 1140.

https://pubmed.ncbi.nlm.nih.gov/29369517

161.Locke, J.E., et al. Obesity increases the risk of end-stage renal disease among living kidney donors. Kidney Int, 2017. 91: 699.

https://pubmed.ncbi.nlm.nih.gov/28041626

162.Gross, C.R., et al. Health-related quality of life in kidney donors from the last five decades: results from the RELIVE study. Am J Transplant, 2013. 13: 2924.

https://pubmed.ncbi.nlm.nih.gov/24011252

163.Maggiore, U., et al. Long-term risks of kidney living donation: Review and position paper by the ERA-EDTA DESCARTES working group. Nephrol Dial Transplant, 2017. 32: 216.

https://pubmed.ncbi.nlm.nih.gov/28186535

164.Lorenz, E.C., et al. The impact of urinary tract infections in renal transplant recipients. Kidney Int, 2010. 78: 719.

https://pubmed.ncbi.nlm.nih.gov/20877371

165.Ariza-Heredia, E.J., et al. Urinary tract infections in kidney transplant recipients: role of gender, urologic abnormalities, and antimicrobial prophylaxis. Ann Transplant, 2013. 18: 195.

https://pubmed.ncbi.nlm.nih.gov/23792521

166.Chang, C.Y., et al. Urological manifestations of BK polyomavirus in renal transplant recipients. Can
J Urol, 2005. 12: 2829.

https://pubmed.ncbi.nlm.nih.gov/16274519

167.Hwang, J.K., et al. Comparative analysis of ABO-incompatible living donor kidney transplantation with ABO-compatible grafts: a single-center experience in Korea. Transplant Proc, 2013. 45: 2931.

https://pubmed.ncbi.nlm.nih.gov/24157006

168.Habicht, A., et al. Increase of infectious complications in ABO-incompatible kidney transplant recipients--a single centre experience. Nephrol Dial Transplant, 2011. 26: 4124.

https://pubmed.ncbi.nlm.nih.gov/21622990

169.Sorto, R., et al. Risk factors for urinary tract infections during the first year after kidney transplantation. Transplant Proc, 2010. 42: 280.

https://pubmed.ncbi.nlm.nih.gov/20172330

170.Thrasher, J.B., et al. Extravesical versus Leadbetter-Politano ureteroneocystostomy: a comparison of urological complications in 320 renal transplants. J Urol, 1990. 144: 1105.

https://pubmed.ncbi.nlm.nih.gov/2231880

171.Mangus, R.S., et al. Stented versus nonstented extravesical ureteroneocystostomy in renal transplantation: a metaanalysis. Am J Transplant, 2004. 4: 1889.

https://pubmed.ncbi.nlm.nih.gov/15476491

172.Wilson, C.H., et al. Routine intraoperative ureteric stenting for kidney transplant recipients. Cochrane Database Syst Rev, 2005: CD004925.

https://pubmed.ncbi.nlm.nih.gov/16235385

173.Osman, Y., et al. Routine insertion of ureteral stent in live-donor renal transplantation: is it worthwhile? Urology, 2005. 65: 867.

https://pubmed.ncbi.nlm.nih.gov/15882713

174.Georgiev, P., et al. Routine stenting reduces urologic complications as compared with stenting “on demand” in adult kidney transplantation. Urology, 2007. 70: 893.

https://pubmed.ncbi.nlm.nih.gov/17919691

175.Akoh, J.A., et al. Effect of ureteric stents on urological infection and graft function following renal transplantation. World J Transplant, 2013. 3: 1.

https://pubmed.ncbi.nlm.nih.gov/24175202

176.Fayek, S.A., et al. Ureteral stents are associated with reduced risk of ureteral complications after kidney transplantation: a large single center experience. Transplantation, 2012. 93: 304.

https://pubmed.ncbi.nlm.nih.gov/22179401

177.Dimitroulis, D., et al. Vascular complications in renal transplantation: a single-center experience in 1367 renal transplantations and review of the literature. Transplant Proc, 2009. 41: 1609.

https://pubmed.ncbi.nlm.nih.gov/19545690

178.Pawlicki, J., et al. Risk factors for early hemorrhagic and thrombotic complications after kidney transplantation. Transplant Proc, 2011. 43: 3013.

https://pubmed.ncbi.nlm.nih.gov/

179.Rouviere, O., et al. Acute thrombosis of renal transplant artery: graft salvage by means of intra-arterial fibrinolysis. Transplantation, 2002. 73: 403.

https://pubmed.ncbi.nlm.nih.gov/11884937

180.Domagala, P., et al. Complications of transplantation of kidneys from expanded-criteria donors. Transplant Proc, 2009. 41: 2970.

https://pubmed.ncbi.nlm.nih.gov/19857652

181.Ammi, M., et al. Evaluation of the Vascular Surgical Complications of Renal Transplantation. Annals of Vascular Surgery, 2016. 33: 23.

https://pubmed.ncbi.nlm.nih.gov/26995525

182.Giustacchini, P., et al. Renal vein thrombosis after renal transplantation: an important cause of graft loss. Transplant Proc, 2002. 34: 2126.

https://pubmed.ncbi.nlm.nih.gov/12270338

183.Wuthrich, R.P. Factor V Leiden mutation: potential thrombogenic role in renal vein, dialysis graft and transplant vascular thrombosis. Curr Opin Nephrol Hypertens, 2001. 10: 409.

https://pubmed.ncbi.nlm.nih.gov/11342806

184.Parajuli, S., et al. Hypercoagulability in Kidney Transplant Recipients. Transplantation, 2016. 100: 719.

https://pubmed.ncbi.nlm.nih.gov/26413991

185.Granata, A., et al. Renal transplant vascular complications: the role of Doppler ultrasound.
J Ultrasound, 2015. 18: 101.

https://pubmed.ncbi.nlm.nih.gov/26191097

186.Hogan, J.L., et al. Late-onset renal vein thrombosis: A case report and review of the literature. Int
J Surg Case Rep, 2015. 6C: 73.

https://pubmed.ncbi.nlm.nih.gov/25528029

187.Musso, D., et al. Symptomatic Venous Thromboembolism and Major Bleeding After Renal Transplantation: Should We Use Pharmacologic Thromboprophylaxis? Transplantation Proceedings, 2016. 48: 2773.

https://pubmed.ncbi.nlm.nih.gov/27788816

188.Hurst, F.P., et al. Incidence, predictors and outcomes of transplant renal artery stenosis after kidney transplantation: analysis of USRDS. Am J Nephrol, 2009. 30: 459.

https://pubmed.ncbi.nlm.nih.gov/19776559

189.Willicombe, M., et al. Postanastomotic transplant renal artery stenosis: association with de novo class II donor-specific antibodies. Am J Transplant, 2014. 14: 133.

https://pubmed.ncbi.nlm.nih.gov/24354873

190.Ghazanfar, A., et al. Management of transplant renal artery stenosis and its impact on long-term allograft survival: a single-centre experience. Nephrol Dial Transplant, 2011. 26: 336.

https://pubmed.ncbi.nlm.nih.gov/20601365

191.Seratnahaei, A., et al. Management of transplant renal artery stenosis. Angiology, 2011. 62: 219.

https://pubmed.ncbi.nlm.nih.gov/20682611

192.Rountas, C., et al. Imaging modalities for renal artery stenosis in suspected renovascular hypertension: prospective intraindividual comparison of color Doppler US, CT angiography, GD-enhanced MR angiography, and digital substraction angiography. Ren Fail, 2007. 29: 295.

https://pubmed.ncbi.nlm.nih.gov/17497443

193.Fervenza, F.C., et al. Renal artery stenosis in kidney transplants. Am J Kidney Dis, 1998. 31: 142.

https://pubmed.ncbi.nlm.nih.gov/9428466

194.Bach, D., et al. Percutaneous renal biopsy: three years of experience with the biopty gun in 761 cases--a survey of results and complications. Int Urol Nephrol, 1999. 31: 15.

https://pubmed.ncbi.nlm.nih.gov/10408297

195.Loffroy, R., et al. Management of post-biopsy renal allograft arteriovenous fistulas with selective arterial embolization: immediate and long-term outcomes. Clin Radiol, 2008. 63: 657.

https://pubmed.ncbi.nlm.nih.gov/18455557

196.Atray, N.K., et al. Post transplant lymphocele: a single centre experience. Clin Transplant, 2004.
18 Suppl 12: 46.

https://pubmed.ncbi.nlm.nih.gov/15217407

197.Ulrich, F., et al. Symptomatic lymphoceles after kidney transplantation - multivariate analysis of risk factors and outcome after laparoscopic fenestration. Clin Transplant, 2010. 24: 273.

https://pubmed.ncbi.nlm.nih.gov/19719727

198.Lucewicz, A., et al. Management of primary symptomatic lymphocele after kidney transplantation: a systematic review. Transplantation, 2011. 92: 663.

https://pubmed.ncbi.nlm.nih.gov/21849931

199.Capocasale, E., et al. Octreotide in the treatment of lymphorrhea after renal transplantation: a preliminary experience. Transplant Proc, 2006. 38: 1047.

https://pubmed.ncbi.nlm.nih.gov/16757259

200.Kayler, L., et al. Kidney transplant ureteroneocystostomy techniques and complications: review of the literature. Transplant Proc, 2010. 42: 1413.

https://pubmed.ncbi.nlm.nih.gov/20620446

201.Secin, F.P., et al. Comparing Taguchi and Lich-Gregoir ureterovesical reimplantation techniques for kidney transplants. J Urol, 2002. 168: 926.

https://pubmed.ncbi.nlm.nih.gov/12187192

202.Dinckan, A., et al. Early and late urological complications corrected surgically following renal transplantation. Transpl Int, 2007. 20: 702.

https://pubmed.ncbi.nlm.nih.gov/17511829

203.Kumar, A., et al. Evaluation of the urological complications of living related renal transplantation at
a single center during the last 10 years: impact of the Double-J* stent. J Urol, 2000. 164: 657.

https://pubmed.ncbi.nlm.nih.gov/10953120

204.Mazzucchi, E., et al. Primary reconstruction is a good option in the treatment of urinary fistula after kidney transplantation. Int Braz J Urol, 2006. 32: 398.

https://pubmed.ncbi.nlm.nih.gov/16953905

205.Davari, H.R., et al. Urological complications in 980 consecutive patients with renal transplantation. Int J Urol, 2006. 13: 1271.

https://pubmed.ncbi.nlm.nih.gov/17010003

206.Sabnis, R.B., et al. The development and current status of minimally invasive surgery to manage urological complications after renal transplantation. Indian J Urol, 2016. 32: 186.

https://pubmed.ncbi.nlm.nih.gov/27555675

207.Breda, A., et al. Incidence of ureteral strictures after laparoscopic donor nephrectomy. J Urol, 2006. 176: 1065.

https://pubmed.ncbi.nlm.nih.gov/16890691

208.Helfand, B.T., et al. Reconstruction of late-onset transplant ureteral stricture disease. BJU Int, 2011. 107: 982.

https://pubmed.ncbi.nlm.nih.gov/20825404

209.Kaskarelis, I., et al. Ureteral complications in renal transplant recipients successfully treated with interventional radiology. Transplant Proc, 2008. 40: 3170.

https://pubmed.ncbi.nlm.nih.gov/19010224

210.Gabr, A.H., et al. Ureteral complications after hand-assisted laparoscopic living donor nephrectomy. Transplantation, 2014. 97: 788.

https://pubmed.ncbi.nlm.nih.gov/24305639

211.Kristo, B., et al. Treatment of renal transplant ureterovesical anastomotic strictures using antegrade balloon dilation with or without holmium:YAG laser endoureterotomy. Urology, 2003. 62: 831.

https://pubmed.ncbi.nlm.nih.gov/14624903

212.Nie, Z., et al. Comparison of urological complications with primary ureteroureterostomy versus conventional ureteroneocystostomy. Clin Transplant, 2010. 24: 615.

https://pubmed.ncbi.nlm.nih.gov/19925475

213.Chaykovska, L., et al. Kidney transplantation into urinary conduits with ureteroureterostomy between transplant and native ureter: single-center experience. Urology, 2009. 73: 380.

https://pubmed.ncbi.nlm.nih.gov/19022489

214.Kumar, S., et al. Long-term graft and patient survival after balloon dilation of ureteric stenosis after renal transplant: A 23-year retrospective matched cohort study. Radiology, 2016. 281: 301.

https://pubmed.ncbi.nlm.nih.gov/27018575

215.Jung, G.O., et al. Clinical significance of posttransplantation vesicoureteral reflux during short-term period after kidney transplantation. Transplant Proc, 2008. 40: 2339.

https://pubmed.ncbi.nlm.nih.gov/18790229

216.Giral, M., et al. Acute graft pyelonephritis and long-term kidney allograft outcome. Kidney Int, 2002. 61: 1880.

https://pubmed.ncbi.nlm.nih.gov/11967040

217.Pichler, R., et al. Endoscopic application of dextranomer/hyaluronic acid copolymer in the treatment of vesico-ureteric reflux after renal transplantation. BJU Int, 2011. 107: 1967.

https://pubmed.ncbi.nlm.nih.gov/21059169

218.Abbott, K.C., et al. Hospitalized nephrolithiasis after renal transplantation in the United States. Am
J Transplant, 2003. 3: 465.

https://pubmed.ncbi.nlm.nih.gov/12694070

219.Verrier, C., et al. Decrease in and management of urolithiasis after kidney transplantation. J Urol, 2012. 187: 1651.

https://pubmed.ncbi.nlm.nih.gov/22425102

220.Oliveira, M., et al. Percutaneous nephrolithotomy in renal transplants: a safe approach with a high stone-free rate. Int Urol Nephrol, 2011. 43: 329.

https://pubmed.ncbi.nlm.nih.gov/20848196

221.Silva, A., et al. Risk factors for urinary tract infection after renal transplantation and its impact on graft function in children and young adults. J Urol, 2010. 184: 1462.

https://pubmed.ncbi.nlm.nih.gov/20727542

222.Challacombe, B., et al. Multimodal management of urolithiasis in renal transplantation. BJU Int, 2005. 96: 385.

https://pubmed.ncbi.nlm.nih.gov/16042735

223.Basiri, A., et al. Ureteroscopic management of urological complications after renal transplantation. Scand J Urol Nephrol, 2006. 40: 53.

https://pubmed.ncbi.nlm.nih.gov/16452057

224.Roine, E., et al. Targeting risk factors for impaired wound healing and wound complications after kidney transplantation. Transplant Proc, 2010. 42: 2542.

https://pubmed.ncbi.nlm.nih.gov/20832540

225.Yannam, G.R., et al. Experience of laparoscopic incisional hernia repair in kidney and/or pancreas transplant recipients. Am J Transplant, 2011. 11: 279.

https://pubmed.ncbi.nlm.nih.gov/21272235

226.Boissier, R., et al. The Risk of Tumour Recurrence in Patients Undergoing Renal Transplantation for End-stage Renal Disease after Previous Treatment for a Urological Cancer: A Systematic Review. Eur Urol, 2018. 73: 94.

https://pubmed.ncbi.nlm.nih.gov/28803033

227.Hevia, V., et al. Effectiveness and Harms of Using Kidneys with Small Renal Tumors from Deceased or Living Donors as a Source of Renal Transplantation: A Systematic Review. Eur Urol Focus, 2018.

https://pubmed.ncbi.nlm.nih.gov/29433988

228.Hevia, V., et al. Management of Localised Prostate Cancer in Kidney Transplant Patients: A Systematic Review from the EAU Guidelines on Renal Transplantation Panel. Eur Urol Focus, 2018. 4: 153.

https://pubmed.ncbi.nlm.nih.gov/29921544

229.Marra, G., et al. Prostate cancer treatment in renal transplant recipients: a systematic review. BJU Int, 2018. 121: 327.

https://pubmed.ncbi.nlm.nih.gov/28921938

230.Tait, B.D., et al. Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation, 2013. 95: 19.

https://pubmed.ncbi.nlm.nih.gov/23238534

231.European Renal Best Practice Transplantation Guideline Development Group. ERBP Guideline on the Management and Evaluation of the Kidney Donor and Recipient. Nephrol Dial Transplant, 2013. 28 Suppl 2: ii1.

https://pubmed.ncbi.nlm.nih.gov/24026881

232.Poulton, K., et al. British Transplantation Society. Guidelines for the detection of clinically relevant antibodies in allotransplantation. 2014.

https://bts.org.uk/wp-content/uploads/2016/09/06_BTS_BSHI_Antibodies-1.pdf

233.UNOS. Unitied Network For Organ Sharing Website:

https://www.unos.org/

234.Heidt, S., Eurotransplant Manual version 3.1 Chapter 10 Histocompatibility. 2015.

https://www.eurotransplant.org/wp-content/uploads/2020/01/H10-Histocompatibility.pdf

235.European Federation for Immunogenetics, EFI Standards for Histocompatibility and Immunogenetics Testing Version 6.3. 2015.

https://efi-web.org/committees/standards-committee

236.De Meester, J., et al. Renal transplantation of highly sensitised patients via prioritised renal allocation programs. Shorter waiting time and above-average graft survival. Nephron, 2002. 92: 111.

https://pubmed.ncbi.nlm.nih.gov/12187093

237.Susal, C., et al. Algorithms for the determination of unacceptable HLA antigen mismatches in kidney transplant recipients. Tissue Antigens, 2013. 82: 83.

https://pubmed.ncbi.nlm.nih.gov/23718733

238.Bohmig, G.A., et al. Strategies to overcome the ABO barrier in kidney transplantation. Nat Rev Nephrol, 2015. 11: 732.

https://pubmed.ncbi.nlm.nih.gov/26324199

239.Zschiedrich, S., et al. An update on ABO-incompatible kidney transplantation. Transpl Int, 2015.
28: 387.

https://pubmed.ncbi.nlm.nih.gov/25387763

240.Higgins, R.M., et al. Antibody-incompatible kidney transplantation in 2015 and beyond. Nephrol Dial Transplant, 2015. 30: 1972.

https://pubmed.ncbi.nlm.nih.gov/25500804

241.Wongsaroj, P., et al. Modern approaches to incompatible kidney transplantation. World J Nephrol, 2015. 4: 354.

https://pubmed.ncbi.nlm.nih.gov/26167458

242.Bamoulid, J., et al. Immunosuppression and Results in Renal Transplantation. European Urology Supplements, 2016. 15: 415.

https://www.eu-openscience.europeanurology.com/article/S1569-9056(16)30082-3/fulltext

243.Kidney Disease Improving Global Outcomes Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant, 2009. 9 Suppl 3: S1.

https://pubmed.ncbi.nlm.nih.gov/19845597

244.Bamoulid, J., et al. The need for minimization strategies: current problems of immunosuppression. Transpl Int, 2015. 28: 891.

https://pubmed.ncbi.nlm.nih.gov/25752992

245.Jones-Hughes, T., et al. Immunosuppressive therapy for kidney transplantation in adults: a systematic review and economic model. Health Technol Assess, 2016. 20: 1.

https://pubmed.ncbi.nlm.nih.gov/27578428

246.Leas, B.F., et al., Calcineurin Inhibitors for Renal Transplant. 2016: Rockville (MD): AHRQ.

https://www.ncbi.nlm.nih.gov/books/NBK356377

247.Sawinski, D., et al. Calcineurin Inhibitor Minimization, Conversion, Withdrawal, and Avoidance Strategies in Renal Transplantation: A Systematic Review and Meta-Analysis. Am J Transplant, 2016. 16: 2117.

https://pubmed.ncbi.nlm.nih.gov/26990455

248.Webster, A.C., et al. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ, 2005. 331: 810.

https://pubmed.ncbi.nlm.nih.gov/16157605

249.Brunet, M., et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Therapeutic Drug Monitoring, 2019. 41: 261.

https://pubmed.ncbi.nlm.nih.gov/31045868/

250.Ekberg, H., et al. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. Transplantation, 2011. 92: 82.

https://pubmed.ncbi.nlm.nih.gov/21562449

251.Xia, T., et al. Risk factors for calcineurin inhibitor nephrotoxicity after renal transplantation: A systematic review and meta-analysis. Drug Des Devel Ther, 2018. 12: 417.

https://pubmed.ncbi.nlm.nih.gov/29535503

252.Gallagher, M., et al. Cyclosporine withdrawal improves long-term graft survival in renal transplantation. Transplantation, 2009. 87: 1877.

https://pubmed.ncbi.nlm.nih.gov/19543068

253.Liu, J.Y., et al. Tacrolimus versus cyclosporine as primary immunosuppressant after renal transplantation: A meta-analysis and economics evaluation. Am J Ther, 2016. 23: e810.

https://pubmed.ncbi.nlm.nih.gov/25299636

254.Opelz, G., et al. Influence of immunosuppressive regimens on graft survival and secondary outcomes after kidney transplantation. Transplantation, 2009. 87: 795.

https://pubmed.ncbi.nlm.nih.gov/19300179

255.Cheung, C.Y., et al. Long-term graft function with tacrolimus and cyclosporine in renal transplantation: Paired kidney analysis. Nephrology, 2009. 14: 758.

https://pubmed.ncbi.nlm.nih.gov/20025685

256.de Fijter, J.W., et al. Early Conversion From Calcineurin Inhibitor- to Everolimus-Based Therapy Following Kidney Transplantation: Results of the Randomized ELEVATE Trial. Am J Transplant, 2017. 17: 1853.

https://pubmed.ncbi.nlm.nih.gov/28027625

257.Goring, S.M., et al. A network meta-analysis of the efficacy of belatacept, cyclosporine and tacrolimus for immunosuppression therapy in adult renal transplant recipients. Cur Med Res Opin, 2014. 30: 1473.

https://pubmed.ncbi.nlm.nih.gov/24628478

258.Pascual, J., et al. Everolimus with Reduced Calcineurin Inhibitor Exposure in Renal Transplantation. J Am Soc Nephrol: JASN, 2018. 29: 1979.

https://pubmed.ncbi.nlm.nih.gov/29752413

259.Basso, G., et al. The effect of anti-thymocyte globulin and everolimus on the kinetics of cytomegalovirus viral load in seropositive kidney transplant recipients without prophylaxis. Transpl Infect Dis, 2018. 20: e12919.

https://onlinelibrary.wiley.com/doi/abs/10.1111/tid.12919

260.Bloom, R.D., et al. A randomized, crossover pharmacokinetic study comparing generic tacrolimus vs. the reference formulation in subpopulations of kidney transplant patients. Clin Transplant, 2013. 27: E685.

https://pubmed.ncbi.nlm.nih.gov/24118450

261.Glander, P., et al. Bioavailability and costs of once-daily and twice-daily tacrolimus formulations in de novo kidney transplantation. Clin Transplant, 2018: e13311.

https://pubmed.ncbi.nlm.nih.gov/29888809

262.Guirado, L., et al. Medium-Term Renal Function in a Large Cohort of Stable Kidney Transplant Recipients Converted From Twice-Daily to Once-Daily Tacrolimus. Transplant Dir, 2015. 1: e24.

https://pubmed.ncbi.nlm.nih.gov/27500226

263.Melilli, E., et al. De novo use of a generic formulation of tacrolimus versus reference tacrolimus in kidney transplantation: Evaluation of the clinical results, histology in protocol biopsies, and immunological monitoring. Transplant Int, 2015. 28: 1283.

https://pubmed.ncbi.nlm.nih.gov/26088437

264.Robertsen, I., et al. Use of generic tacrolimus in elderly renal transplant recipients: Precaution is needed. Transplantation, 2015. 99: 528.

https://pubmed.ncbi.nlm.nih.gov/25148382

265.Rostaing, L., et al. Novel once-daily extended-release tacrolimus versus twice-daily tacrolimus in de novo kidney transplant recipients: Two-year results of phase 3, double-blind, randomized trial. Am
J Kidney Dis, 2016. 67: 648.

https://pubmed.ncbi.nlm.nih.gov/26717860

266.Saengram, W., et al. Extended release versus immediate release tacrolimus in kidney transplant recipients: a systematic review and meta-analysis. Eur J Clin Pharmacol, 2018: 1.

https://pubmed.ncbi.nlm.nih.gov/29961086

267.Silva, H.T., et al. Long-term follow-up of a phase III clinical trial comparing tacrolimus extended-release/MMF, tacrolimus/MMF, and cyclosporine/MMF in de novo kidney transplant recipients. Transplantation, 2014. 97: 636.

https://pubmed.ncbi.nlm.nih.gov/24521771

268.Kahn, J., et al. Immunosuppression with generic tacrolimus in liver and kidney transplantation-systematic review and meta-analysis on biopsy-proven acute rejection and bioequivalence. Transplant Int, 2020. 33: 356.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154701/pdf/TRI-33-356.pdf

269.Lehner, L.J., et al. Evaluation of adherence and tolerability of prolonged-release tacrolimus (AdvagrafTM) in kidney transplant patients in Germany: A multicenter, noninterventional study. Clin Transplant, 2018. 32: e13142.

https://pubmed.ncbi.nlm.nih.gov/29052906

270.Paterson, T.S.E., et al. Impact of Once- Versus Twice-Daily Tacrolimus Dosing on Medication Adherence in Stable Renal Transplant Recipients: A Canadian Single-Center Randomized Controlled Trial. Can J Kidney Health, 2019. 6.

https://journals.sagepub.com/doi/pdf/10.1177/2054358119867993

271.Caillard, S., et al. Advagraf((R)) , a once-daily prolonged release tacrolimus formulation, in kidney transplantation: literature review and guidelines from a panel of experts. Transpl Int, 2016. 29: 860.

https://pubmed.ncbi.nlm.nih.gov/26373896

272.McCormack, P.L. Extended-release tacrolimus: a review of its use in de novo kidney transplantation. Drugs, 2014. 74: 2053.

https://pubmed.ncbi.nlm.nih.gov/25352392

273.Molnar, A.O., et al. Generic immunosuppression in solid organ transplantation: systematic review and meta-analysis. BMJ, 2015. 350: h3163.

https://pubmed.ncbi.nlm.nih.gov/26101226

274.Staatz, C.E., et al. Clinical Pharmacokinetics of Once-Daily Tacrolimus in Solid-Organ Transplant Patients. Clin Pharmacokinet, 2015. 54: 993.

https://pubmed.ncbi.nlm.nih.gov/26038096

275.van Gelder, T., et al. European Society for Organ Transplantation Advisory Committee recommendations on generic substitution of immunosuppressive drugs. Transpl Int, 2011. 24: 1135.

https://pubmed.ncbi.nlm.nih.gov/22032583

276.Wissing, K.M., et al. Prospective randomized study of conversion from tacrolimus to cyclosporine A to improve glucose metabolism in patients with posttransplant diabetes mellitus after renal transplantation. Am J Transplant, 2018. 18: 1726.

https://pubmed.ncbi.nlm.nih.gov/29337426

277.Diekmann, F. Immunosuppressive minimization with mTOR inhibitors and belatacept. Transpl Int, 2015. 28: 921.

https://pubmed.ncbi.nlm.nih.gov/25959589

278.Kamar, N., et al. Calcineurin inhibitor-sparing regimens based on mycophenolic acid after kidney transplantation. Transpl Int, 2015. 28: 928.

https://pubmed.ncbi.nlm.nih.gov/25557802

279.Park, S., et al. Reduced Tacrolimus Trough Level Is Reflected by Estimated Glomerular Filtration Rate (eGFR) Changes in Stable Renal Transplantation Recipients: Results of the OPTIMUM Phase 3 Randomized Controlled Study. Ann Transplantn, 2018. 23: 401.

https://pubmed.ncbi.nlm.nih.gov/29891834

280.Sharif, A., et al. Meta-analysis of calcineurin-inhibitor-sparing regimens in kidney transplantation.,
J Am Soc Nephrol 2011. 22: 2107.

https://pubmed.ncbi.nlm.nih.gov/

281.Snanoudj, R., et al. Immunological risks of minimization strategies. Transpl Int, 2015. 28: 901.

https://pubmed.ncbi.nlm.nih.gov/25809144

282.Etienne, I., et al. A 50% reduction in cyclosporine exposure in stable renal transplant recipients: Renal function benefits. Nephrol Dial Transplant, 2010. 25: 3096.

https://pubmed.ncbi.nlm.nih.gov/20299336

283.Budde, K., et al. Enteric-coated mycophenolate sodium. Expert Opin Drug Saf, 2010. 9: 981.

https://pubmed.ncbi.nlm.nih.gov/20795786

284.Cooper, M., et al. Enteric-coated mycophenolate sodium immunosuppression in renal transplant patients: efficacy and dosing. Transplant Rev (Orlando), 2012. 26: 233.

https://pubmed.ncbi.nlm.nih.gov/22863029

285.Staatz, C.E., et al. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol, 2014. 88: 1351.

https://pubmed.ncbi.nlm.nih.gov/24792322

286.van Gelder, T., et al. Mycophenolate revisited. Transpl Int, 2015. 28: 508.

https://pubmed.ncbi.nlm.nih.gov/25758949

287.Wagner, M., et al. Mycophenolic acid versus azathioprine as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev, 2015: CD007746.

https://pubmed.ncbi.nlm.nih.gov/26633102

288.Hirsch, H.H., et al. European perspective on human polyomavirus infection, replication and disease in solid organ transplantation. Clin Microbiol Infect, 2014. 20 Suppl 7: 74.

https://pubmed.ncbi.nlm.nih.gov/24476010

289.Langone, A.J., et al. Enteric-coated mycophenolate sodium versus mycophenolate mofetil in renal transplant recipients experiencing gastrointestinal intolerance: A multicenter, double-blind, randomized study. Transplantation, 2011. 91: 470.

https://pubmed.ncbi.nlm.nih.gov/21245794

290.Doria, C., et al. Association of mycophenolic acid dose with efficacy and safety events in kidney transplant patients receiving tacrolimus: An analysis of the Mycophenolic acid Observational REnal transplant registry. Clin Transplant, 2012. 26: E602.

https://pubmed.ncbi.nlm.nih.gov/23121178

291.Langone, A., et al. Does reduction in mycophenolic acid dose compromise efficacy regardless of tacrolimus exposure level? An analysis of prospective data from the Mycophenolic Renal Transplant (MORE) Registry. Clin Transplant, 2013. 27: 15.

https://pubmed.ncbi.nlm.nih.gov/22861144

292.Su, V.C.H., et al. Impact of mycophenolate mofetil dose reduction on allograft outcomes in kidney transplant recipients on tacrolimus-based regimens: A systematic review. Ann Pharmacother, 2011. 45: 248.

https://pubmed.ncbi.nlm.nih.gov/21304036

293.Kotton, C.N., et al. Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation, 2013. 96: 333.

https://pubmed.ncbi.nlm.nih.gov/23896556

294.Le Meur, Y., et al. Therapeutic drug monitoring of mycophenolates in kidney transplantation: report of The Transplantation Society consensus meeting. Transplant Rev (Orlando), 2011. 25: 58.

https://pubmed.ncbi.nlm.nih.gov/21454067

295.Haller, M.C., et al. Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst Rev, 2016: CD005632.

https://pubmed.ncbi.nlm.nih.gov/27546100

296.Meier-Kriesche, H.U., et al. Mycophenolate mofetil initiation in renal transplant patients at different times posttransplantation: The TranCept switch study. Transplantation, 2011. 91: 984.

https://pubmed.ncbi.nlm.nih.gov/21464796

297.Mathis, A.S., et al. Calcineurin inhibitor sparing strategies in renal transplantation, part one: Late sparing strategies. World J Transplant, 2014. 4: 57.

https://pubmed.ncbi.nlm.nih.gov/25032096

298.Remuzzi, G., et al. Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J Am Soc Nephrol, 2007. 18: 1973.

https://pubmed.ncbi.nlm.nih.gov/17460145

299.Kunz, R., et al. Maintenance therapy with triple versus double immunosuppressive regimen in renal transplantation: a meta-analysis. Transplantation, 1997. 63: 386.

https://pubmed.ncbi.nlm.nih.gov/9039928

300.Le Meur, Y., et al. Early steroid withdrawal and optimization of mycophenolic acid exposure in kidney transplant recipients receiving mycophenolate mofetil. Transplantation, 2011. 92: 1244.

https://pubmed.ncbi.nlm.nih.gov/22067312

301.Suszynski, T.M., et al. Prospective randomized trial of maintenance immunosuppression with rapid discontinuation of prednisone in adult kidney transplantation. Am J Transplant, 2013. 13: 961.

https://pubmed.ncbi.nlm.nih.gov/23432755

302.Thomusch, O., et al. Rabbit-ATG or basiliximab induction for rapid steroid withdrawal after renal transplantation (Harmony): an open-label, multicentre, randomised controlled trial. Lancet, 2016. 388: 3006.

https://pubmed.ncbi.nlm.nih.gov/27871759

303.Torres, A., et al. Randomized Controlled Trial Assessing the Impact of Tacrolimus Versus Cyclosporine on the Incidence of Posttransplant Diabetes Mellitus. Kidney Int Reports, 2018. 3: 1304.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224662/pdf/main.pdf

304.Halleck, F., et al. An evaluation of sirolimus in renal transplantation. Expert Opin Drug Metab Toxicol, 2012. 8: 1337.

https://pubmed.ncbi.nlm.nih.gov/22928953

305.Ventura-Aguiar, P., et al. Safety of mTOR inhibitors in adult solid organ transplantation. Expert Opin Drug Saf, 2016. 15: 303.

https://pubmed.ncbi.nlm.nih.gov/26667069

306.Witzke, O., et al. Everolimus immunosuppression in kidney transplantation: What is the optimal strategy? Transplant Rev (Orlando), 2016. 30: 3.

https://pubmed.ncbi.nlm.nih.gov/26603484

307.Montero, N., et al. Mammalian Target of Rapamycin Inhibitors Combined with Calcineurin Inhibitors as Initial Immunosuppression in Renal Transplantation: A Meta-analysis. Transplantation, 2019. 103: 2031.

https://journals.lww.com/transplantjournal/Fulltext/2019/10000/Mammalian_Target_of_Rapamycin_Inhibitors_Combined.16.aspx

308.Badve, S.V., et al. Mammalian target of rapamycin inhibitors and clinical outcomes in adult kidney transplant recipients. Clin J Am Soc Nephrol, 2016. 11: 1845.

https://pubmed.ncbi.nlm.nih.gov/27445164

309.Lim, W.H., et al. A systematic review of conversion from calcineurin inhibitor to mammalian target of rapamycin inhibitors for maintenance immunosuppression in kidney transplant recipients. Am
J Transplant, 2014. 14: 2106.

https://pubmed.ncbi.nlm.nih.gov/25088685

310.Liu, J., et al. Efficacy and safety of everolimus for maintenance immunosuppression of kidney transplantation: A meta-analysis of randomized controlled trials. PLoS ONE, 2017. 12: e0170246.

https://pubmed.ncbi.nlm.nih.gov/28107397

311.Knoll, G.A., et al. Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ, 2014. 349: g6679.

https://pubmed.ncbi.nlm.nih.gov/25422259

312.Xie, X., et al. mTOR inhibitor versus mycophenolic acid as the primary immunosuppression regime combined with calcineurin inhibitor for kidney transplant recipients: a meta-analysis. BMC Nephrol, 2015. 16: 91.

https://pubmed.ncbi.nlm.nih.gov/26126806

313.Wolf, S., et al. Effects of mTOR-Is on malignancy and survival following renal transplantation: A systematic review and meta-analysis of randomized trials with a minimum follow-up of 24 months. PLoS One, 2018. 13: e0194975.

https://pubmed.ncbi.nlm.nih.gov/29659588

314.Hahn, D., et al. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev, 2019. 2019: CD004290.

https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004290.pub3/full

315.Shipkova, M., et al. Therapeutic Drug Monitoring of Everolimus: A Consensus Report. Ther Drug Monit, 2016. 38: 143.

https://pubmed.ncbi.nlm.nih.gov/26982492

316.Rostaing, L., et al. The pharmacokinetics of everolimus in de novo kidney transplant patients receiving tacrolimus: An analysis from the randomized ASSET study. Ann Transplant, 2014. 19: 337.

https://pubmed.ncbi.nlm.nih.gov/25017487

317.Shihab, F., et al. Association of Clinical Events With Everolimus Exposure in Kidney Transplant Patients Receiving Low Doses of Tacrolimus. Am J Transplant, 2017. 17: 2363.

https://pubmed.ncbi.nlm.nih.gov/28141897

318.Kumar, J., et al. Systematic review on role of mammalian target of rapamycin inhibitors as an alternative to calcineurin inhibitors in renal transplant: Challenges and window to excel. Exp Clin Transplant, 2017. 15: 241.

https://pubmed.ncbi.nlm.nih.gov/27915965

319.Qazi, Y., et al. Efficacy and Safety of Everolimus Plus Low-Dose Tacrolimus Versus Mycophenolate Mofetil Plus Standard-Dose Tacrolimus in De Novo Renal Transplant Recipients: 12-Month Data. Am J Transplant, 2017. 17: 1358.

https://pubmed.ncbi.nlm.nih.gov/27775865

320.Rummo, O.O., et al. ADHERE: randomized controlled trial comparing renal function in de novo kidney transplant recipients receiving prolonged-release tacrolimus plus mycophenolate mofetil or sirolimus. Transplant Int, 2017. 30: 83.

https://pubmed.ncbi.nlm.nih.gov/27754567

321.Berger, S.P., et al. Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant, 2019. 19: 3018.

https://onlinelibrary.wiley.com/doi/full/10.1111/ajt.15480

322.Sommerer, C., et al. An open-label, randomized trial indicates that everolimus with tacrolimus or cyclosporine is comparable to standard immunosuppression in de novo kidney transplant patients. Kidney Int, 2019. 96: 231.

https://www.kidney-international.org/article/S0085-2538(19)30193-0/pdf

323.Tedesco-Silva, H., et al. Safety of Everolimus With Reduced Calcineurin Inhibitor Exposure in De Novo Kidney Transplants: An Analysis From the Randomized TRANSFORM Study. Transplantation, 2019. 103: 1953.

https://journals.lww.com/transplantjournal/Fulltext/2019/09000/Safety_of_Everolimus_With_Reduced_Calcineurin.36.aspx

324.He, L., et al. Efficacy and safety of everolimus plus lowdose calcineurin inhibitor vs. mycophenolate mofetil plus standard-dose calcineurin inhibitor in renal transplant recipients: A systematic review and meta-analysis. Clin Nephrol, 2018. 89: 336.

https://pubmed.ncbi.nlm.nih.gov/29292693

325.Liu, J.Y., et al. Sirolimus versus tacrolimus as primary immunosuppressant after renal transplantation: A meta-analysis and economics evaluation. Am J Ther, 2016. 23: e1720.

https://pubmed.ncbi.nlm.nih.gov/25569597

326.Zhao, D.Q., et al. Sirolimus-based immunosuppressive regimens in renal transplantation: A systemic review. Transplant Proc, 2016. 48: 3.

https://pubmed.ncbi.nlm.nih.gov/26915834

327.Liefeldt, L., et al. Donor-specific HLA antibodies in a cohort comparing everolimus with cyclosporine after kidney transplantation. Am J Transplant, 2012. 12: 1192.

https://pubmed.ncbi.nlm.nih.gov/22300538

328.Wolf, S., et al. Infections after kidney transplantation: A comparison of mTOR-Is and CNIs as basic immunosuppressants. A systematic review and meta-analysis. Transpl Infect Dis, 2020.

https://onlinelibrary.wiley.com/doi/full/10.1111/tid.13267

329.Halleck, F., et al. Transplantation: Sirolimus for secondary SCC prevention in renal transplantation. Nat Rev Nephrol, 2012. 8: 687.

https://pubmed.ncbi.nlm.nih.gov/23026948

330.Ponticelli, C., et al. Skin cancer in kidney transplant recipients. J Nephrol, 2014. 27: 385.

https://pubmed.ncbi.nlm.nih.gov/24809813

331.Cheung, C.Y., et al. Conversion to mammalian target of rapamycin inhibitors in kidney transplant recipients with de novo cancers. Oncotarget, 2017. 8: 44833.

https://pubmed.ncbi.nlm.nih.gov/28160552

332.Opelz, G., et al. Immunosuppression with mammalian target of rapamycin inhibitor and incidence of post-transplant cancer in kidney transplant recipients. Nephrol Dial Transplant, 2016. 31: 1360.

https://pubmed.ncbi.nlm.nih.gov/27190384

333.Liu, Y., et al. Basiliximab or antithymocyte globulin for induction therapy in kidney transplantation: a meta-analysis. Transplant Proc, 2010. 42: 1667.

https://pubmed.ncbi.nlm.nih.gov/20620496

334.Sun, Z.J., et al. Efficacy and Safety of Basiliximab Versus Daclizumab in Kidney Transplantation: A Meta-Analysis. Transplant Proc, 2015. 47: 2439.

https://pubmed.ncbi.nlm.nih.gov/26518947

335.Webster, A.C., et al. Interleukin 2 receptor antagonists for kidney transplant recipients. Cochrane Database Syst Rev, 2010: CD003897.

https://pubmed.ncbi.nlm.nih.gov/20091551

336.Lim, W., et al. Effect of interleukin-2 receptor antibody therapy on acute rejection risk and severity, long-term renal function, infection and malignancy-related mortality in renal transplant recipients. Transplant Int, 2010. 23: 1207.

https://pubmed.ncbi.nlm.nih.gov/20536789

337.McKeage, K., et al. Basiliximab: A review of its use as induction therapy in renal transplantation. BioDrugs, 2010. 24: 55.

https://pubmed.ncbi.nlm.nih.gov/20055533

338.Hellemans, R., et al. Induction Therapy for Kidney Transplant Recipients: Do We Still Need Anti-IL2 Receptor Monoclonal Antibodies? Am J Transplant, 2017. 17: 22.

https://pubmed.ncbi.nlm.nih.gov/27223882

339.Ali, H., et al. Rabbit anti-thymocyte globulin (rATG) versus IL-2 receptor antagonist induction therapies in tacrolimus-based immunosuppression era: a meta-analysis. Int Urol Nephrol, 2020.

https://link.springer.com/article/10.1007/s11255-020-02418-w

340.Bamoulid, J., et al. Anti-thymocyte globulins in kidney transplantation: focus on current indications and long-term immunological side effects. Nephrol Dial Transplant, 2016.

https://pubmed.ncbi.nlm.nih.gov/27798202

341.Malvezzi, P., et al. Induction by anti-thymocyte globulins in kidney transplantation: a review of the literature and current usage. J Nephropathol, 2015. 4: 110.

https://pubmed.ncbi.nlm.nih.gov/26457257

342.Hill, P., et al. Polyclonal and monoclonal antibodies for induction therapy in kidney transplant recipients. Cochrane Database of Syst Rev, 2017. 2017: CD004759.

https://pubmed.ncbi.nlm.nih.gov/28073178

343.Webster, A.C., et al. Polyclonal and monoclonal antibodies for treating acute rejection episodes in kidney transplant recipients. Cochrane Database of Syst Rev, 2017. 2017: CD004756.

https://pubmed.ncbi.nlm.nih.gov/28731207

344.Gill, J., et al. Induction immunosuppressive therapy in the elderly kidney transplant recipient in the United States. Clinical Journal of the Am Soc Nephrol, 2011. 6: 1168.

https://pubmed.ncbi.nlm.nih.gov/21511836

345.Grinyo, J.M., et al. Belatacept utilization recommendations: an expert position. Expert Opin Drug Saf, 2013. 12: 111.

https://pubmed.ncbi.nlm.nih.gov/23206310

346.Wojciechowski, D., et al. Current status of costimulatory blockade in renal transplantation. Curr Opin Nephrol Hypertens, 2016. 25: 583.

https://pubmed.ncbi.nlm.nih.gov/27517137

347.Durrbach, A., et al. Long-Term Outcomes in Belatacept- Versus Cyclosporine-Treated Recipients of Extended Criteria Donor Kidneys: Final Results From BENEFIT-EXT, a Phase III Randomized Study. Am J Transplant, 2016. 16: 3192.

https://pubmed.ncbi.nlm.nih.gov/27130868

348.Vincenti, F., et al. Belatacept and Long-Term Outcomes in Kidney Transplantation. N Engl J Med, 2016. 374: 333.

https://pubmed.ncbi.nlm.nih.gov/27355541

349.De Graav, G.N., et al. A Randomized Controlled Clinical Trial Comparing Belatacept with Tacrolimus after de Novo Kidney Transplantation. Transplantation, 2017. 101: 2571.

https://pubmed.ncbi.nlm.nih.gov/28403127

350.Masson, P., et al. Belatacept for kidney transplant recipients. The Cochrane database Syst Rev, 2014. 11: CD010699.

https://pubmed.ncbi.nlm.nih.gov/25416857

351.Talawila, N., et al. Does belatacept improve outcomes for kidney transplant recipients? A systematic review. Transplant Int, 2015. 28: 1251.

https://pubmed.ncbi.nlm.nih.gov/25965549

352.Bray, R.A., et al. De novo donor-specific antibodies in belatacept-treated vs cyclosporine-treated kidney-transplant recipients: Post hoc analyses of the randomized phase III BENEFIT and BENEFIT-EXT studies. Am J Transplant, 2018.

https://pubmed.ncbi.nlm.nih.gov/29509295

353.Grannas, G., et al. Ten years experience with belatacept-based immunosuppression after kidney transplantation. J Clin Med Res, 2014. 6: 98.

https://pubmed.ncbi.nlm.nih.gov/24578751

354.Schwarz, C., et al. Long-term outcome of belatacept therapy in de novo kidney transplant recipients - A case-match analysis. Transplant Int, 2015. 28: 820.

https://pubmed.ncbi.nlm.nih.gov/25703346

355.Elhamahmi, D.A., et al. Early Conversion to Belatacept in Kidney Transplant Recipients with Low Glomerular Filtration Rate. Transplantation, 2018. 102: 478.

https://pubmed.ncbi.nlm.nih.gov/29077658

356.Grinyo, J.M., et al. Safety and Efficacy Outcomes 3 Years After Switching to Belatacept From a Calcineurin Inhibitor in Kidney Transplant Recipients: Results From a Phase 2 Randomized Trial. Am J Kidney Dis, 2017. 69: 587.

https://pubmed.ncbi.nlm.nih.gov/27889299

357.Darres, A., et al. Conversion to Belatacept in Maintenance Kidney Transplant Patients: A Retrospective Multicenter European Study. Transplantation, 2018. 102: 1545.

https://pubmed.ncbi.nlm.nih.gov/29570163

358.Bamoulid, J., et al. Advances in pharmacotherapy to treat kidney transplant rejection. Expert Opin Pharmacother, 2015. 16: 1627.

https://pubmed.ncbi.nlm.nih.gov/26159444

359.Broecker, V., et al. The significance of histological diagnosis in renal allograft biopsies in 2014. Transpl Int, 2015. 28: 136.

https://pubmed.ncbi.nlm.nih.gov/25205033

360.Halloran, P.F., et al. Molecular assessment of disease states in kidney transplant biopsy samples. Nat Rev Nephrol, 2016. 12: 534.

https://pubmed.ncbi.nlm.nih.gov/27345248

361.Lentine, K.L., et al. The implications of acute rejection for allograft survival in contemporary U.S. kidney transplantation. Transplantation, 2012. 94: 369.

https://pubmed.ncbi.nlm.nih.gov/22836133

362.Clayton, P.A., et al. Long-term outcomes after acute rejection in kidney transplant recipients: An Anzdata analysis. J Am Soc Nephrol, 2019. 30: 1697.

https://jasn.asnjournals.org/content/30/9/1697.abstract

363.Loupy, A., et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am J Transplant, 2020. 20: 2318.

https://pubmed.ncbi.nlm.nih.gov/32463180

364.Morgan, T.A., et al. Complications of Ultrasound-Guided Renal Transplant Biopsies. Am
J Transplant, 2016. 16: 1298.

https://pubmed.ncbi.nlm.nih.gov/26601796

365.Redfield, R.R., et al. Nature, timing, and severity of complications from ultrasound-guided percutaneous renal transplant biopsy. Transpl Int, 2016. 29: 167.

https://pubmed.ncbi.nlm.nih.gov/26284692

366.Bouatou, Y., et al. Response to treatment and long-term outcomes in kidney transplant recipients with acute T cell-mediated rejection. Am J Transplant, 2019. 19: 1972.

https://onlinelibrary.wiley.com/doi/full/10.1111/ajt.15299

367.Schinstock, C.A., et al. Recommended Treatment for Antibody-mediated Rejection After Kidney Transplantation: the 2019 Expert Consensus From the Transplantion Society Working Group. Transplantation, 2020.

https://pubmed.ncbi.nlm.nih.gov/31895348

368.Amore, A. Antibody-mediated rejection. Curr Opin Organ Transplant, 2015. 20: 536.

https://pubmed.ncbi.nlm.nih.gov/26284692

369.Burton, S.A., et al. Treatment of antibody-mediated rejection in renal transplant patients: a clinical practice survey. Clin Transplant, 2015. 29: 118.

https://pubmed.ncbi.nlm.nih.gov/25430052

370.Haririan, A. Current status of the evaluation and management of antibody-mediated rejection in kidney transplantation. Curr Opin Nephrol Hypertens, 2015. 24: 576.

https://pubmed.ncbi.nlm.nih.gov/26406806

371.Sautenet, B., et al. One-year Results of the Effects of Rituximab on Acute Antibody-Mediated Rejection in Renal Transplantation: RITUX ERAH, a Multicenter Double-blind Randomized Placebo-controlled Trial. Transplantation, 2016. 100: 391.

https://pubmed.ncbi.nlm.nih.gov/26555944

372.Loupy, A., et al. Antibody-Mediated Rejection of Solid-Organ Allografts. N Engl J Med, 2018.
379: 1150.

https://pubmed.ncbi.nlm.nih.gov/30231232

373.Wan, S.S., et al. The Treatment of Antibody-Mediated Rejection in Kidney Transplantation: An Updated Systematic Review and Meta-Analysis. Transplantation, 2018. 102: 557.

https://pubmed.ncbi.nlm.nih.gov/29315141

374.Kamar, N., et al. Incidence and predictive factors for infectious disease after rituximab therapy in kidney-transplant patients. Am J Transplant, 2010. 10: 89.

https://pubmed.ncbi.nlm.nih.gov/19656128

375.Velidedeoglu, E., et al. Summary of 2017 FDA Public Workshop: Antibody-mediated Rejection in Kidney Transplantation. Transplantation, 2018. 102: e257.

https://pubmed.ncbi.nlm.nih.gov/29470345

376.Farrugia, D., et al. Malignancy-related mortality following kidney transplantation is common. Kidney Int, 2014. 85: 1395.

https://pubmed.ncbi.nlm.nih.gov/24257690

377.Piselli, P., et al. Risk of de novo cancers after transplantation: results from a cohort of 7217 kidney transplant recipients, Italy 1997-2009. Eur J Cancer, 2013. 49: 336.

https://pubmed.ncbi.nlm.nih.gov/23062667

378.Jardine, A.G., et al. Prevention of cardiovascular disease in adult recipients of kidney transplants. Lancet, 2011. 378: 1419.

https://pubmed.ncbi.nlm.nih.gov/22000138

379.Liefeldt, L., et al. Risk factors for cardiovascular disease in renal transplant recipients and strategies to minimize risk. Transpl Int, 2010. 23: 1191.

https://pubmed.ncbi.nlm.nih.gov/21059108

380.Nankivell, B.J., et al. Diagnosis and prevention of chronic kidney allograft loss. Lancet, 2011.
378: 1428.

https://pubmed.ncbi.nlm.nih.gov/22000139

381.Boor, P., et al. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant, 2015.
15: 863.

https://pubmed.ncbi.nlm.nih.gov/25691290

382.Westall, G.P., et al. Antibody-mediated rejection. Curr Opin Organ Transplant, 2015. 20: 492.

https://pubmed.ncbi.nlm.nih.gov/26262460

383.Chapman, J.R. Chronic calcineurin inhibitor nephrotoxicity-lest we forget. Am J Transplant, 2011. 11: 693.

https://pubmed.ncbi.nlm.nih.gov/21446974