Guidelines

Renal Cell Carcinoma

9. REFERENCES

1.Alaghehbandan, R., et al. A tribute to Prof. Ondrej Hes, MD, PhD (1968-2022). Mod Pathol, 2022.

https://pubmed.ncbi.nlm.nih.gov/36333474/

2.Guyatt, G.H., et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008. 336: 924.

https://pubmed.ncbi.nlm.nih.gov/18436948/

3.Guyatt, G.H., et al. What is “quality of evidence” and why is it important to clinicians? BMJ, 2008. 336: 995.

https://pubmed.ncbi.nlm.nih.gov/18456631/

4.Phillips, B., et al. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. Access date January 2023.

https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009

5.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.

https://pubmed.ncbi.nlm.nih.gov/18467413/

6.Ferlay, J., et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer, 2018. 103: 356.

https://pubmed.ncbi.nlm.nih.gov/30100160/

7.Capitanio, U., et al. Epidemiology of Renal Cell Carcinoma. Eur Urol, 2019. 75: 74.

https://pubmed.ncbi.nlm.nih.gov/30243799/

8.Bukavina, L., et al. Epidemiology of Renal Cell Carcinoma: 2022 Update. Eur Urol, 2022. 82: 529.

https://pubmed.ncbi.nlm.nih.gov/36100483/

9.Levi, F., et al. The changing pattern of kidney cancer incidence and mortality in Europe. BJU Int, 2008. 101: 949.

https://pubmed.ncbi.nlm.nih.gov/18241251/

10.Moch, H., et al. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur Urol, 2016. 70: 93.

https://pubmed.ncbi.nlm.nih.gov/26935559/

11.Tahbaz, R., et al. Prevention of kidney cancer incidence and recurrence: lifestyle, medication and nutrition. Curr Opin Urol, 2018. 28: 62.

https://pubmed.ncbi.nlm.nih.gov/29059103/

12.Huang, J., et al. A Global Trend Analysis of Kidney Cancer Incidence and Mortality and Their Associations with Smoking, Alcohol Consumption, and Metabolic Syndrome. Eur Urol Focus, 2022. 8: 200.

https://pubmed.ncbi.nlm.nih.gov/33495133/

13.Gansler, T., et al. Prevalence of Cigarette Smoking among Patients with Different Histologic Types of Kidney Cancer. Cancer Epidemiol Biomarkers Prev, 2020. 29: 1406.

https://pubmed.ncbi.nlm.nih.gov/32357956/

14.Al-Bayati, O., et al. Systematic review of modifiable risk factors for kidney cancer. Urol Oncol, 2019. 37: 359.

https://pubmed.ncbi.nlm.nih.gov/30685335/

15.van de Pol, J.A.A., et al. Etiologic heterogeneity of clear-cell and papillary renal cell carcinoma in the Netherlands Cohort Study. Int J Cancer, 2021. 148: 67.

https://pubmed.ncbi.nlm.nih.gov/32638386/

16.Jay, R., et al. Alcohol consumption and the risk of renal cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC). Urol Oncol, 2017. 35: 117.

https://pubmed.ncbi.nlm.nih.gov/28159493/

17.Wozniak, M.B., et al. Alcohol consumption and the risk of renal cancers in the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer, 2015. 137: 1953.

https://pubmed.ncbi.nlm.nih.gov/25866035/

18.Antwi, S.O., et al. Alcohol consumption, variability in alcohol dehydrogenase genes and risk of renal cell carcinoma. Int J Cancer, 2018. 142: 747.

https://pubmed.ncbi.nlm.nih.gov/29023769/

19.Diana, P., et al. Screening programs for renal cell carcinoma: a systematic review by the EAU young academic urologists renal cancer working group. World J Urol, 2022.

https://pubmed.ncbi.nlm.nih.gov/35362747/

20.Rossi, S.H., et al. Epidemiology and screening for renal cancer. World J Urol, 2018. 36: 1341.

https://pubmed.ncbi.nlm.nih.gov/29610964/

21.Usher-Smith, J.A., et al. The Yorkshire Kidney Screening Trial (YKST): protocol for a feasibility study of adding non-contrast abdominal CT scanning to screen for kidney cancer and other abdominal pathology within a trial of community-based CT screening for lung cancer. BMJ Open, 2022.
12: e063018.

https://pubmed.ncbi.nlm.nih.gov/36127097/

22.Akerlund, J., et al. Increased risk for renal cell carcinoma in end stage renal disease - a population-based case-control study. Scand J Urol, 2021. 55: 209.

https://pubmed.ncbi.nlm.nih.gov/33769206/

23.WHO Classification of Tumours Editorial Board. Urinary and Male Genital Tumours. In: WHO Classification of Tumours, 5th Edition, Volume 8. 2022. ISBN 978-92-832-4512-4.

24.Moch, H., et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur Urol, 2022. 82: 458.

https://pubmed.ncbi.nlm.nih.gov/35853783/

25.Moch H, H.P., Ulbright TM, Reuter VE, Eds. WHO Classification of Tumours of the Urinary System and Male Genital Organs, eds. WHO. 2016, Lyon, France.

https://pubmed.ncbi.nlm.nih.gov/26996659/

26.An, J., et al. Patient Characteristics and Survival Outcomes of Non-Metastatic, Non-Clear Cell Renal Cell Carcinoma. Front Oncol, 2021. 11: 786307.

https://pubmed.ncbi.nlm.nih.gov/35083144/

27.Trpkov, K., et al. New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod Pathol, 2021. 34: 1392.

https://pubmed.ncbi.nlm.nih.gov/33664427/

28.Klatte, T., et al. Prognostic factors and prognostic models for renal cell carcinoma: a literature review. World J Urol, 2018. 36: 1943.

https://pubmed.ncbi.nlm.nih.gov/29713755/

29.Keegan, K.A., et al. Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. J Urol, 2012. 188: 391.

https://pubmed.ncbi.nlm.nih.gov/22698625/

30.Pitra, T., et al. A Comprehensive Commentary on the Multilocular Cystic Renal Neoplasm of Low Malignant Potential: A Urologist’s Perspective. Cancers (Basel), 2022. 14: 831.

https://pubmed.ncbi.nlm.nih.gov/35159098/

31.Hora, M. Re: Philip S. Macklin, Mark E. Sullivan, Charles R. Tapping, et al. Tumour Seeding in the Tract of Percutaneous Renal Tumour Biopsy: A Report on Seven Cases from a UK Tertiary Referral Centre. Eur Urol 2019;75:861-7. Eur Urol, 2019. 76: e96.

https://pubmed.ncbi.nlm.nih.gov/31255420/

32.Volpe, A., et al. Chromophobe renal cell carcinoma (RCC): oncological outcomes and prognostic factors in a large multicentre series. BJU Int, 2012. 110: 76.

https://pubmed.ncbi.nlm.nih.gov/22044519/

33.Neves, J.B., et al. Pattern, timing and predictors of recurrence after surgical resection of chromophobe renal cell carcinoma. World J Urol, 2021. 39: 3823.

https://pubmed.ncbi.nlm.nih.gov/33851271/

34.Amin, M.B., et al. Collecting duct carcinoma versus renal medullary carcinoma: an appeal for nosologic and biological clarity. Am J Surg Pathol, 2014. 38: 871.

https://pubmed.ncbi.nlm.nih.gov/24805860/

35.Shah, A.Y., et al. Management and outcomes of patients with renal medullary carcinoma: a multicentre collaborative study. BJU Int, 2017. 120: 782.

https://pubmed.ncbi.nlm.nih.gov/27860149/

36.Iacovelli, R., et al. Clinical outcome and prognostic factors in renal medullary carcinoma: A pooled analysis from 18 years of medical literature. Can Urol Assoc J, 2015. 9: E172.

https://pubmed.ncbi.nlm.nih.gov/26085875/

37.Alvarez, O., et al. Renal medullary carcinoma and sickle cell trait: A systematic review. Pediatr Blood Cancer, 2015. 62: 1694.

https://pubmed.ncbi.nlm.nih.gov/26053587/

38.Breda, A., et al. Clinical and pathological outcomes of renal cell carcinoma (RCC) in native kidneys of patients with end-stage renal disease: a long-term comparative retrospective study with RCC diagnosed in the general population. World J Urol, 2015. 33: 1.

https://pubmed.ncbi.nlm.nih.gov/24504760/

39.Bhatt, N.R., et al. Dilemmas in diagnosis and natural history of renal oncocytoma and implications for management. Can Urol Assoc J, 2015. 9: E709.

https://pubmed.ncbi.nlm.nih.gov/26664505/

40.Wilson, M.P., et al. Diagnostic accuracy of 99mTc-sestamibi SPECT/CT for detecting renal oncocytomas and other benign renal lesions: a systematic review and meta-analysis. Abdom Radiol (NY), 2020. 45: 2532.

https://pubmed.ncbi.nlm.nih.gov/32193593/

41.Patel, H.D., et al. Surgical histopathology for suspected oncocytoma on renal mass biopsy: a systematic review and meta-analysis. BJU Int, 2017. 119: 661.

https://pubmed.ncbi.nlm.nih.gov/28058773/

42.Liu, S., et al. Active surveillance is suitable for intermediate term follow-up of renal oncocytoma diagnosed by percutaneous core biopsy. BJU Int, 2016. 118 Suppl 3: 30.

https://pubmed.ncbi.nlm.nih.gov/27457972/

43.Kawaguchi, S., et al. Most renal oncocytomas appear to grow: observations of tumor kinetics with active surveillance. J Urol, 2011. 186: 1218.

https://pubmed.ncbi.nlm.nih.gov/21849182/

44.Richard, P.O., et al. Active Surveillance for Renal Neoplasms with Oncocytic Features is Safe. J Urol, 2016. 195: 581.

https://pubmed.ncbi.nlm.nih.gov/26388501/

45.Abdessater, M., et al. Renal Oncocytoma: An Algorithm for Diagnosis and Management. Urology, 2020. 143: 173.

https://pubmed.ncbi.nlm.nih.gov/32512107/

46.Meagher, M.F., et al. Comparison of renal functional outcomes of active surveillance and partial nephrectomy in the management of oncocytoma. World J Urol, 2021. 39: 1195.

https://pubmed.ncbi.nlm.nih.gov/32556559/

47.Shuch, B., et al. Defining early-onset kidney cancer: implications for germline and somatic mutation testing and clinical management. J Clin Oncol, 2014. 32: 431.

https://pubmed.ncbi.nlm.nih.gov/24378414/

48.Moch, H., et al. Morphological clues to the appropriate recognition of hereditary renal neoplasms. Semin Diagn Pathol, 2018. 35: 184.

https://pubmed.ncbi.nlm.nih.gov/29454577/

49.Eble JN, S.G., et al. Pathology and genetics of tumours of the urinary system and male genital organs. In: World Health Organization Classification of Tumours. S.G. Eble JN, Epstein JI, et al, Eds. 2004, IARC: Lyon, France.

50.Srigley, J.R., et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am J Surg Pathol, 2013. 37: 1469.

https://pubmed.ncbi.nlm.nih.gov/24025519/

51.Pignot, G., et al. Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Urology, 2007. 69: 230.

https://pubmed.ncbi.nlm.nih.gov/17275070/

52.Przybycin, C.G., et al. Hereditary syndromes with associated renal neoplasia: a practical guide to histologic recognition in renal tumor resection specimens. Adv Anat Pathol, 2013. 20: 245.

https://pubmed.ncbi.nlm.nih.gov/23752087/

53.Shuch, B., et al. The surgical approach to multifocal renal cancers: hereditary syndromes, ipsilateral multifocality, and bilateral tumors. Urol Clin North Am, 2012. 39: 133.

https://pubmed.ncbi.nlm.nih.gov/22487757/

54.Bratslavsky, G., et al. Salvage partial nephrectomy for hereditary renal cancer: feasibility and outcomes. J Urol, 2008. 179: 67.

https://pubmed.ncbi.nlm.nih.gov/17997447/

55.Chahoud, J., et al. Evaluation, diagnosis and surveillance of renal masses in the setting of VHL disease. World J Urol, 2021. 39: 2409.

https://pubmed.ncbi.nlm.nih.gov/32936333/

56.VHL Alliance. VHLA Suggested Active Surveillance Guidelines. 2020. Access date January 2023.

https://www.vhl.org/

57.Nielsen, S.M., et al. Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome. J Clin Oncol, 2016. 34: 2172.

https://pubmed.ncbi.nlm.nih.gov/27114602/

58.Forde, C., et al. Hereditary Leiomyomatosis and Renal Cell Cancer: Clinical, Molecular, and Screening Features in a Cohort of 185 Affected Individuals. Eur Urol Oncol, 2020. 3: 764.

https://pubmed.ncbi.nlm.nih.gov/31831373/

59.Kauffman, E.C., et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol, 2014. 11: 465.

https://pubmed.ncbi.nlm.nih.gov/25048860/

60.Jonasch, E., et al. Phase II study of the oral HIF-2α inhibitor MK-6482 for Von Hippel-Lindau disease–associated renal cell carcinoma. J Clin Oncol, 2020. 38: 5003.

https://ascopubs.org/doi/10.1200/JCO.2020.38.15_suppl.5003

61.Bhatt, J.R., et al. Natural History of Renal Angiomyolipoma (AML): Most Patients with Large AMLs >4cm Can Be Offered Active Surveillance as an Initial Management Strategy. Eur Urol, 2016. 70: 85.

https://pubmed.ncbi.nlm.nih.gov/26873836/

62.Fittschen, A., et al. Prevalence of sporadic renal angiomyolipoma: a retrospective analysis of 61,389 in- and out-patients. Abdom Imaging, 2014. 39: 1009.

https://pubmed.ncbi.nlm.nih.gov/24705668/

63.Nese, N., et al. Pure epithelioid PEComas (so-called epithelioid angiomyolipoma) of the kidney:
A clinicopathologic study of 41 cases: detailed assessment of morphology and risk stratification. Am J Surg Pathol, 2011. 35: 161.

https://pubmed.ncbi.nlm.nih.gov/21263237/

64.Tsai, H.Y., et al. Clinicopathologic analysis of renal epithelioid angiomyolipoma: Consecutively excised 23 cases. Kaohsiung J Med Sci, 2019. 35: 33.

https://pubmed.ncbi.nlm.nih.gov/30844148/

65.Fernández-Pello, S., et al. Management of Sporadic Renal Angiomyolipomas: A Systematic Review of Available Evidence to Guide Recommendations from the European Association of Urology Renal Cell Carcinoma Guidelines Panel. Eur Urol Oncol, 2020. 3: 57.

https://pubmed.ncbi.nlm.nih.gov/31171501/

66.Nelson, C.P., et al. Contemporary diagnosis and management of renal angiomyolipoma. J Urol, 2002. 168: 1315.

https://pubmed.ncbi.nlm.nih.gov/12352384/

67.Bissler, J.J., et al. Everolimus for renal angiomyolipoma in patients with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis: extension of a randomized controlled trial. Nephrol Dial Transplant, 2016. 31: 111.

https://pubmed.ncbi.nlm.nih.gov/26156073/

68.Bissler, J.J., et al. Everolimus long-term use in patients with tuberous sclerosis complex: Four-year update of the EXIST-2 study. PLoS One, 2017. 12: e0180939.

https://pubmed.ncbi.nlm.nih.gov/28792952/

69.Geynisman, D.M., et al. Sporadic Angiomyolipomas Growth Kinetics While on Everolimus: Results of a Phase II Trial. J Urol, 2020. 204: 531.

https://pubmed.ncbi.nlm.nih.gov/32250730/

70.Abern, M.R., et al. Characteristics and outcomes of tumors arising from the distal nephron. Urology, 2012. 80: 140.

https://pubmed.ncbi.nlm.nih.gov/22626576/

71.Husillos, A., et al. [Collecting duct renal cell carcinoma]. Actas Urol Esp, 2011. 35: 368.

https://pubmed.ncbi.nlm.nih.gov/21450372/

72.Cimadamore, A., et al. Towards a new WHO classification of renal cell tumor: what the clinician needs to know-a narrative review. Transl Androl Urol, 2021. 10: 1506.

https://pubmed.ncbi.nlm.nih.gov/33850785/

73.Schoots, I.G., et al. Bosniak Classification for Complex Renal Cysts Reevaluated: A Systematic Review. J Urol, 2017. 198: 12.

https://pubmed.ncbi.nlm.nih.gov/28286071/

74.Tse, J.R., et al. Prevalence of Malignancy and Histopathological Association of Bosniak Classification, Version 2019 Class III and IV Cystic Renal Masses. J Urol, 2021. 205: 1031.

https://pubmed.ncbi.nlm.nih.gov/33085925/

75.Defortescu, G., et al. Diagnostic performance of contrast-enhanced ultrasonography and magnetic resonance imaging for the assessment of complex renal cysts: A prospective study. Int J Urol, 2017. 24: 184.

https://pubmed.ncbi.nlm.nih.gov/28147450/

76.Silverman, S.G., et al. Bosniak Classification of Cystic Renal Masses, Version 2019: An Update Proposal and Needs Assessment. Radiology, 2019. 292: 475.

https://pubmed.ncbi.nlm.nih.gov/31210616/

77.Cantisani, V., et al. EFSUMB 2020 Proposal for a Contrast-Enhanced Ultrasound-Adapted Bosniak Cyst Categorization - Position Statement. Ultraschall Med, 2021. 42: 154.

https://pubmed.ncbi.nlm.nih.gov/33307594/

78.Donin, N.M., et al. Clinicopathologic outcomes of cystic renal cell carcinoma. Clin Genitourin Cancer, 2015. 13: 67.

https://pubmed.ncbi.nlm.nih.gov/25088469/

79.Park, J.J., et al. Postoperative Outcome of Cystic Renal Cell Carcinoma Defined on Preoperative Imaging: A Retrospective Study. J Urol, 2017. 197: 991.

https://pubmed.ncbi.nlm.nih.gov/27765694/

80.Chandrasekar, T., et al. Natural History of Complex Renal Cysts: Clinical Evidence Supporting Active Surveillance. J Urol, 2018. 199: 633.

https://pubmed.ncbi.nlm.nih.gov/28941915/

81.Nouhaud, F.X., et al. Contemporary assessment of the correlation between Bosniak classification and histological characteristics of surgically removed atypical renal cysts (UroCCR-12 study). World J Urol, 2018. 36: 1643.

https://pubmed.ncbi.nlm.nih.gov/29730837/

82.Sobin LH., G.M., Wittekind C. (eds). TNM classification of malignant tumors, UICC International Union Against Cancer. Vol. 7th edn. 2009.

https://www.ncbi.nlm.nih.gov/nlmcatalog/101511218

83.Kim, S.P., et al. Independent validation of the 2010 American Joint Committee on Cancer TNM classification for renal cell carcinoma: results from a large, single institution cohort. J Urol, 2011. 185: 2035.

https://pubmed.ncbi.nlm.nih.gov/21496854/

84.Novara, G., et al. Validation of the 2009 TNM version in a large multi-institutional cohort of patients treated for renal cell carcinoma: are further improvements needed? Eur Urol, 2010. 58: 588.

https://pubmed.ncbi.nlm.nih.gov/20674150/

85.Waalkes, S., et al. Is there a need to further subclassify pT2 renal cell cancers as implemented by the revised 7th TNM version? Eur Urol, 2011. 59: 258.

https://pubmed.ncbi.nlm.nih.gov/21030143/

86.Bertini, R., et al. Renal sinus fat invasion in pT3a clear cell renal cell carcinoma affects outcomes of patients without nodal involvement or distant metastases. J Urol, 2009. 181: 2027.

https://pubmed.ncbi.nlm.nih.gov/19286201/

87.Poon, S.A., et al. Invasion of renal sinus fat is not an independent predictor of survival in pT3a renal cell carcinoma. BJU Int, 2009. 103: 1622.

https://pubmed.ncbi.nlm.nih.gov/19154464/

88.Bedke, J., et al. Perinephric and renal sinus fat infiltration in pT3a renal cell carcinoma: possible prognostic differences. BJU Int, 2009. 103: 1349.

https://pubmed.ncbi.nlm.nih.gov/19076147/

89.Izumi, K., et al. Contact with renal sinus is associated with poor prognosis in surgically treated pT1 clear cell renal cell carcinoma. Int J Urol, 2020. 27: 657.

https://pubmed.ncbi.nlm.nih.gov/32458519/

90.Heidenreich, A., et al. Preoperative imaging in renal cell cancer. World J Urol, 2004. 22: 307.

https://pubmed.ncbi.nlm.nih.gov/15290202/

91.Sheth, S., et al. Current concepts in the diagnosis and management of renal cell carcinoma: role of multidetector ct and three-dimensional CT. Radiographics, 2001. 21 Spec No: S237.

https://pubmed.ncbi.nlm.nih.gov/11598260/

92.Capitanio, U., et al. A Renewal of the TNM Staging System for Patients with Renal Cancer To Comply with Current Decision-making: Proposal from the European Association of Urology Guidelines Panel. Eur Urol, 2022. 1: 3.

https://pubmed.ncbi.nlm.nih.gov/36253306/

93.Amin, M.B., et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin, 2017. 67: 93.

https://pubmed.ncbi.nlm.nih.gov/28094848/

94.Klatte, T., et al. A Literature Review of Renal Surgical Anatomy and Surgical Strategies for Partial Nephrectomy. Eur Urol, 2015. 68: 980.

https://pubmed.ncbi.nlm.nih.gov/25911061/

95.Spaliviero, M., et al. An Arterial Based Complexity (ABC) Scoring System to Assess the Morbidity Profile of Partial Nephrectomy. Eur Urol, 2016. 69: 72.

https://pubmed.ncbi.nlm.nih.gov/26298208/

96.Hakky, T.S., et al. Zonal NePhRO scoring system: a superior renal tumor complexity classification model. Clin Genitourin Cancer, 2014. 12: e13.

https://pubmed.ncbi.nlm.nih.gov/24120084/

97.Jayson, M., et al. Increased incidence of serendipitously discovered renal cell carcinoma. Urology, 1998. 51: 203.

https://pubmed.ncbi.nlm.nih.gov/9495698/

98.Vasudev, N.S., et al. Challenges of early renal cancer detection: symptom patterns and incidental diagnosis rate in a multicentre prospective UK cohort of patients presenting with suspected renal cancer. BMJ Open, 2020. 10: e035938.

https://pubmed.ncbi.nlm.nih.gov/32398335/

99.Patard, J.J., et al. Correlation between symptom graduation, tumor characteristics and survival in renal cell carcinoma. Eur Urol, 2003. 44: 226.

https://pubmed.ncbi.nlm.nih.gov/12875943/

100.Lee, C.T., et al. Mode of presentation of renal cell carcinoma provides prognostic information. Urol Oncol, 2002. 7: 135.

https://pubmed.ncbi.nlm.nih.gov/12474528/

101.Sacco, E., et al. Paraneoplastic syndromes in patients with urological malignancies. Urol Int, 2009. 83: 1.

https://pubmed.ncbi.nlm.nih.gov/19641351/

102.Kim, H.L., et al. Paraneoplastic signs and symptoms of renal cell carcinoma: implications for prognosis. J Urol, 2003. 170: 1742.

https://pubmed.ncbi.nlm.nih.gov/14532767/

103.Magera, J.S., Jr., et al. Association of abnormal preoperative laboratory values with survival after radical nephrectomy for clinically confined clear cell renal cell carcinoma. Urology, 2008. 71: 278.

https://pubmed.ncbi.nlm.nih.gov/18308103/

104.Uzzo, R.G., et al. Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol, 2001. 166: 6.

https://pubmed.ncbi.nlm.nih.gov/11435813/

105.Huang, W.C., et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol, 2006. 7: 735.

https://pubmed.ncbi.nlm.nih.gov/16945768/

106.Israel, G.M., et al. How I do it: evaluating renal masses. Radiology, 2005. 236: 441.

https://pubmed.ncbi.nlm.nih.gov/16040900/

107.Israel, G.M., et al. Pitfalls in renal mass evaluation and how to avoid them. Radiographics, 2008.
28: 1325.

https://pubmed.ncbi.nlm.nih.gov/18794310/

108.Choudhary, S., et al. Renal oncocytoma: CT features cannot reliably distinguish oncocytoma from other renal neoplasms. Clin Radiol, 2009. 64: 517.

https://pubmed.ncbi.nlm.nih.gov/19348848/

109.Rosenkrantz, A.B., et al. MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR Am J Roentgenol, 2010. 195: W421.

https://pubmed.ncbi.nlm.nih.gov/21098174/

110.Hindman, N., et al. Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology, 2012. 265: 468.

https://pubmed.ncbi.nlm.nih.gov/23012463/

111.Pedrosa, I., et al. MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. Radiographics, 2008. 28: 985.

https://pubmed.ncbi.nlm.nih.gov/18635625/

112.Yamashita Y AA, S.K. The therapeutic value of lymph node dissection for renal cell carcinoma. Nishinihon J Urol, 1989: 777.

https://www.frontiersin.org/articles/10.3389/fonc.2021.790381/full

113.Gong, I.H., et al. Relationship among total kidney volume, renal function and age. J Urol, 2012.
187: 344.

https://pubmed.ncbi.nlm.nih.gov/22099987/

114.Ferda, J., et al. Assessment of the kidney tumor vascular supply by two-phase MDCT-angiography. Eur J Radiol, 2007. 62: 295.

https://pubmed.ncbi.nlm.nih.gov/17324548/

115.Shao, P., et al. Precise segmental renal artery clamping under the guidance of dual-source computed tomography angiography during laparoscopic partial nephrectomy. Eur Urol, 2012.
62: 1001.

https://pubmed.ncbi.nlm.nih.gov/22695243/

116.Vogel, C., et al. Imaging in Suspected Renal-Cell Carcinoma: Systematic Review. Clin Genitourin Cancer, 2019. 17: e345.

https://pubmed.ncbi.nlm.nih.gov/30528378/

117.Fan, L., et al. Diagnostic efficacy of contrast-enhanced ultrasonography in solid renal parenchymal lesions with maximum diameters of 5 cm. J Ultrasound Med, 2008. 27: 875.

https://pubmed.ncbi.nlm.nih.gov/18499847/

118.Correas, J.M., et al. [Guidelines for contrast enhanced ultrasound (CEUS)--update 2008]. J Radiol, 2009. 90: 123.

https://pubmed.ncbi.nlm.nih.gov/19212280/

119.Mitterberger, M., et al. Contrast-enhanced ultrasound for diagnosis of prostate cancer and kidney lesions. Eur J Radiol, 2007. 64: 231.

https://pubmed.ncbi.nlm.nih.gov/17881175/

120.Janus, C.L., et al. Comparison of MRI and CT for study of renal and perirenal masses. Crit Rev Diagn Imaging, 1991. 32: 69.

https://pubmed.ncbi.nlm.nih.gov/1863349/

121.Mueller-Lisse, U.G., et al. Imaging of advanced renal cell carcinoma. World J Urol, 2010. 28: 253.

https://pubmed.ncbi.nlm.nih.gov/20458484/

122.Kabala, J.E., et al. Magnetic resonance imaging in the staging of renal cell carcinoma. Br J Radiol, 1991. 64: 683.

https://pubmed.ncbi.nlm.nih.gov/1884119/

123.Hallscheidt, P.J., et al. Preoperative staging of renal cell carcinoma with inferior vena cava thrombus using multidetector CT and MRI: prospective study with histopathological correlation. J Comput Assist Tomogr, 2005. 29: 64.

https://pubmed.ncbi.nlm.nih.gov/15665685/

124.Putra, L.G., et al. Improved assessment of renal lesions in pregnancy with magnetic resonance imaging. Urology, 2009. 74: 535.

https://pubmed.ncbi.nlm.nih.gov/19604560/

125.Giannarini, G., et al. Potential and limitations of diffusion-weighted magnetic resonance imaging in kidney, prostate, and bladder cancer including pelvic lymph node staging: a critical analysis of the literature. Eur Urol, 2012. 61: 326.

https://pubmed.ncbi.nlm.nih.gov/22000497/

126.Johnson, B.A., et al. Diagnostic performance of prospectively assigned clear cell Likelihood scores (ccLS) in small renal masses at multiparametric magnetic resonance imaging. Urol Oncol, 2019.
37: 941.

https://pubmed.ncbi.nlm.nih.gov/31540830/

127.Steinberg, R.L., et al. Prospective performance of clear cell likelihood scores (ccLS) in renal masses evaluated with multiparametric magnetic resonance imaging. Eur Radiol, 2021. 31: 314.

https://pubmed.ncbi.nlm.nih.gov/32770377/

128.Capogrosso, P., et al. Follow-up After Treatment for Renal Cell Carcinoma: The Evidence Beyond the Guidelines. Eur Urol Focus, 2016. 1: 272.

https://pubmed.ncbi.nlm.nih.gov/28723399/

129.Furrer, M.A., et al. Comparison of the Diagnostic Performance of Contrast-enhanced Ultrasound with That of Contrast-enhanced Computed Tomography and Contrast-enhanced Magnetic Resonance Imaging in the Evaluation of Renal Masses: A Systematic Review and Meta-analysis. Eur Urol Oncol, 2020. 3: 464.

https://pubmed.ncbi.nlm.nih.gov/31570270/

130.Park, J.W., et al. Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int, 2009.
103: 615.

https://pubmed.ncbi.nlm.nih.gov/19007371/

131.Bechtold, R.E., et al. Imaging approach to staging of renal cell carcinoma. Urol Clin North Am, 1997. 24: 507.

https://pubmed.ncbi.nlm.nih.gov/9275976/

132.Miles, K.A., et al. CT staging of renal carcinoma: a prospective comparison of three dynamic computed tomography techniques. Eur J Radiol, 1991. 13: 37.

https://pubmed.ncbi.nlm.nih.gov/1889427/

133.Lim, D.J., et al. Computerized tomography in the preoperative staging for pulmonary metastases in patients with renal cell carcinoma. J Urol, 1993. 150: 1112.

https://pubmed.ncbi.nlm.nih.gov/8371366/

134.Larcher, A., et al. When to perform preoperative chest computed tomography for renal cancer staging. BJU Int, 2017. 120: 490.

https://pubmed.ncbi.nlm.nih.gov/27684653/

135.Voss, J., et al. Chest computed tomography for staging renal tumours: validation and simplification of a risk prediction model from a large contemporary retrospective cohort. BJU Int, 2020. 125: 561.

https://pubmed.ncbi.nlm.nih.gov/31955483/

136.Marshall, M.E., et al. Low incidence of asymptomatic brain metastases in patients with renal cell carcinoma. Urology, 1990. 36: 300.

https://pubmed.ncbi.nlm.nih.gov/2219605/

137.Koga, S., et al. The diagnostic value of bone scan in patients with renal cell carcinoma. J Urol, 2001. 166: 2126.

https://pubmed.ncbi.nlm.nih.gov/11696720/

138.Henriksson, C., et al. Skeletal metastases in 102 patients evaluated before surgery for renal cell carcinoma. Scand J Urol Nephrol, 1992. 26: 363.

https://pubmed.ncbi.nlm.nih.gov/1292074/

139.Seaman, E., et al. Association of radionuclide bone scan and serum alkaline phosphatase in patients with metastatic renal cell carcinoma. Urology, 1996. 48: 692.

https://pubmed.ncbi.nlm.nih.gov/8911510/

140.Beuselinck, B., et al. Whole-body diffusion-weighted magnetic resonance imaging for the detection of bone metastases and their prognostic impact in metastatic renal cell carcinoma patients treated with angiogenesis inhibitors. Acta Oncol, 2020. 59: 818.

https://pubmed.ncbi.nlm.nih.gov/32297532/

141.Kotecha, R.R., et al. Prognosis of Incidental Brain Metastases in Patients With Advanced Renal Cell Carcinoma. J Natl Compr Canc Netw, 2021. 19: 432.

https://pubmed.ncbi.nlm.nih.gov/33578374/

142.Warren, K.S., et al. The Bosniak classification of renal cystic masses. BJU Int, 2005. 95: 939.

https://pubmed.ncbi.nlm.nih.gov/15839908/

143.Bosniak, M.A. The use of the Bosniak classification system for renal cysts and cystic tumors. J Urol, 1997. 157: 1852.

https://pubmed.ncbi.nlm.nih.gov/9112545/

144.Richard, P.O., et al. Renal Tumor Biopsy for Small Renal Masses: A Single-center 13-year Experience. Eur Urol, 2015. 68: 1007.

https://pubmed.ncbi.nlm.nih.gov/25900781/

145.Shannon, B.A., et al. The value of preoperative needle core biopsy for diagnosing benign lesions among small, incidentally detected renal masses. J Urol, 2008. 180: 1257.

https://pubmed.ncbi.nlm.nih.gov/18707712/

146.Maturen, K.E., et al. Renal mass core biopsy: accuracy and impact on clinical management. AJR Am J Roentgenol, 2007. 188: 563.

https://pubmed.ncbi.nlm.nih.gov/17242269/

147.Volpe, A., et al. Contemporary results of percutaneous biopsy of 100 small renal masses: a single center experience. J Urol, 2008. 180: 2333.

https://pubmed.ncbi.nlm.nih.gov/18930274/

148.Veltri, A., et al. Diagnostic accuracy and clinical impact of imaging-guided needle biopsy of renal masses. Retrospective analysis on 150 cases. Eur Radiol, 2011. 21: 393.

https://pubmed.ncbi.nlm.nih.gov/20809129/

149.Abel, E.J., et al. Percutaneous biopsy of primary tumor in metastatic renal cell carcinoma to predict high risk pathological features: comparison with nephrectomy assessment. J Urol, 2010. 184: 1877.

https://pubmed.ncbi.nlm.nih.gov/20850148/

150.Richard, P.O., et al. Is Routine Renal Tumor Biopsy Associated with Lower Rates of Benign Histology following Nephrectomy for Small Renal Masses? J Urol, 2018. 200: 731.

https://pubmed.ncbi.nlm.nih.gov/29653161/

151.Amaral, B.S., et al. Renal Tumor Biopsy: Rationale to Avoid Surgery in Small Renal Masses. Curr Urol Rep, 2021. 22: 46.

https://pubmed.ncbi.nlm.nih.gov/34487255/

152.Marconi, L., et al. Systematic Review and Meta-analysis of Diagnostic Accuracy of Percutaneous Renal Tumour Biopsy. Eur Urol, 2016. 69: 660.

https://pubmed.ncbi.nlm.nih.gov/26323946/

153.Leveridge, M.J., et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur Urol, 2011. 60: 578.

https://pubmed.ncbi.nlm.nih.gov/21704449/

154.Breda, A., et al. Comparison of accuracy of 14-, 18- and 20-G needles in ex-vivo renal mass biopsy: a prospective, blinded study. BJU Int, 2010. 105: 940.

https://pubmed.ncbi.nlm.nih.gov/19888984/

155.Cate, F., et al. Core Needle Biopsy and Fine Needle Aspiration Alone or in Combination: Diagnostic Accuracy and Impact on Management of Renal Masses. J Urol, 2017. 197: 1396.

https://pubmed.ncbi.nlm.nih.gov/28093293/

156.Yang, C.S., et al. Percutaneous biopsy of the renal mass: FNA or core needle biopsy? Cancer Cytopathol, 2017. 125: 407.

https://pubmed.ncbi.nlm.nih.gov/28334518/

157.Motzer, R.J., et al. Phase II randomized trial comparing sequential first-line everolimus and second-line sunitinib versus first-line sunitinib and second-line everolimus in patients with metastatic renal cell carcinoma. J Clin Oncol, 2014. 32: 2765.

https://pubmed.ncbi.nlm.nih.gov/25049330/

158.Wood, B.J., et al. Imaging guided biopsy of renal masses: indications, accuracy and impact on clinical management. J Urol, 1999. 161: 1470.

https://pubmed.ncbi.nlm.nih.gov/10210375/

159.Somani, B.K., et al. Image-guided biopsy-diagnosed renal cell carcinoma: critical appraisal of technique and long-term follow-up. Eur Urol, 2007. 51: 1289.

https://pubmed.ncbi.nlm.nih.gov/17081679/

160.Vasudevan, A., et al. Incidental renal tumours: the frequency of benign lesions and the role of preoperative core biopsy. BJU Int, 2006. 97: 946.

https://pubmed.ncbi.nlm.nih.gov/16643475/

161.Neuzillet, Y., et al. Accuracy and clinical role of fine needle percutaneous biopsy with computerized tomography guidance of small (less than 4.0 cm) renal masses. J Urol, 2004. 171: 1802.

https://pubmed.ncbi.nlm.nih.gov/15076280/

162.Schmidbauer, J., et al. Diagnostic accuracy of computed tomography-guided percutaneous biopsy of renal masses. Eur Urol, 2008. 53: 1003.

https://pubmed.ncbi.nlm.nih.gov/18061339/

163.Wunderlich, H., et al. The accuracy of 250 fine needle biopsies of renal tumors. J Urol, 2005. 174: 44.

https://pubmed.ncbi.nlm.nih.gov/15947574/

164.Abel, E.J., et al. Multi-Quadrant Biopsy Technique Improves Diagnostic Ability in Large Heterogeneous Renal Masses. J Urol, 2015. 194: 886.

https://pubmed.ncbi.nlm.nih.gov/25837535/

165.Macklin, P.S., et al. Tumour Seeding in the Tract of Percutaneous Renal Tumour Biopsy: A Report on Seven Cases from a UK Tertiary Referral Centre. Eur Urol, 2019. 75: 861.

https://pubmed.ncbi.nlm.nih.gov/30591353/

166.Cooper, S., et al. Diagnostic Yield and Complication Rate in Percutaneous Needle Biopsy of Renal Hilar Masses With Comparison With Renal Cortical Mass Biopsies in a Cohort of 195 Patients. AJR Am J Roentgenol, 2019. 212: 570.

https://pubmed.ncbi.nlm.nih.gov/30645159/

167.Bratslavsky, G., et al. Genetic risk assessment for hereditary renal cell carcinoma: Clinical consensus statement. Cancer, 2021. 127: 3957.

https://pubmed.ncbi.nlm.nih.gov/34343338/

168.Mucci, L.A., et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA, 2016. 315: 68.

https://pubmed.ncbi.nlm.nih.gov/26746459/

169.Beckermann, K.E., et al. Renal Medullary Carcinoma: Establishing Standards in Practice. J Oncol Pract, 2017. 13: 414.

https://pubmed.ncbi.nlm.nih.gov/28697319/

170.Kickuth, R., et al. Interventional management of hypervascular osseous metastasis: role of embolotherapy before orthopedic tumor resection and bone stabilization. AJR Am J Roentgenol, 2008. 191: W240.

https://pubmed.ncbi.nlm.nih.gov/19020210/

171.Forauer, A.R., et al. Selective palliative transcatheter embolization of bony metastases from renal cell carcinoma. Acta Oncol, 2007. 46: 1012.

https://pubmed.ncbi.nlm.nih.gov/17851849/

172.Appleman, L.J., et al. Randomized, double-blind phase III study of pazopanib versus placebo in patients with metastatic renal cell carcinoma who have no evidence of disease following metastasectomy: A trial of the ECOG-ACRIN cancer research group (E2810). J Clin Oncol, 2019.
37: 4502.

https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.4502

173.Procopio, G., et al. Sorafenib Versus Observation Following Radical Metastasectomy for Clear-cell Renal Cell Carcinoma: Results from the Phase 2 Randomized Open-label RESORT Study. Eur Urol Oncol, 2019. 2: 699.

https://pubmed.ncbi.nlm.nih.gov/31542243/

174.Amato, R.J. Chemotherapy for renal cell carcinoma. Semin Oncol, 2000. 27: 177.

https://pubmed.ncbi.nlm.nih.gov/10768596/

175.Negrier, S., et al. Medroxyprogesterone, interferon alfa-2a, interleukin 2, or combination of both cytokines in patients with metastatic renal carcinoma of intermediate prognosis: results of a randomized controlled trial. Cancer, 2007. 110: 2468.

https://pubmed.ncbi.nlm.nih.gov/17932908/

176.Motzer, R.J., et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med, 2007. 356: 115.

https://pubmed.ncbi.nlm.nih.gov/17215529/

177.Carlo, M.I., et al. Familial Kidney Cancer: Implications of New Syndromes and Molecular Insights. Eur Urol, 2019. 76: 754.

https://pubmed.ncbi.nlm.nih.gov/31326218/

178.Amin, M.B., et al., AJCC Cancer Staging Manual. 8th ed. 2017.

https://link.springer.com/book/9783319406176

179.Bierley, J.D., et al., UICC TNM classification of malignant tumours. 2017, Chichester, UK.

https://www.uicc.org/resources/tnm-classification-malignant-tumours-8th-edition

180.Sun, M., et al. Prognostic factors and predictive models in renal cell carcinoma: a contemporary review. Eur Urol, 2011. 60: 644.

https://pubmed.ncbi.nlm.nih.gov/21741163/

181.Zhang, L., et al. Tumor necrosis as a prognostic variable for the clinical outcome in patients with renal cell carcinoma: a systematic review and meta-analysis. BMC Cancer, 2018. 18: 870.

https://pubmed.ncbi.nlm.nih.gov/30176824/

182.Fuhrman, S.A., et al. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol, 1982. 6: 655.

https://pubmed.ncbi.nlm.nih.gov/7180965/

183.Delahunt, B., et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol, 2013. 37: 1490.

https://pubmed.ncbi.nlm.nih.gov/24025520/

184.Paner, G.P., et al. Updates in the Eighth Edition of the Tumor-Node-Metastasis Staging Classification for Urologic Cancers. Eur Urol, 2018. 73: 560.

https://pubmed.ncbi.nlm.nih.gov/29325693/

185.Dagher, J., et al. Clear cell renal cell carcinoma: validation of World Health Organization/International Society of Urological Pathology grading. Histopathology, 2017. 71: 918.

https://pubmed.ncbi.nlm.nih.gov/28718911/

186.Leibovich, B.C., et al. Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol, 2010. 183: 1309.

https://pubmed.ncbi.nlm.nih.gov/20171681/

187.Adibi, M., et al. Percentage of sarcomatoid component as a prognostic indicator for survival in renal cell carcinoma with sarcomatoid dedifferentiation. Urol Oncol, 2015. 33: 427.e17.

https://pubmed.ncbi.nlm.nih.gov/26004164/

188.Kim, T., et al. Using percentage of sarcomatoid differentiation as a prognostic factor in renal cell carcinoma. Clin Genitourin Cancer, 2015. 13: 225.

https://pubmed.ncbi.nlm.nih.gov/25544725/

189.Ohashi, R., et al. Multi-institutional re-evaluation of prognostic factors in chromophobe renal cell carcinoma: proposal of a novel two-tiered grading scheme. Virchows Arch, 2020. 476: 409.

https://pubmed.ncbi.nlm.nih.gov/31760491/

190.Cheville, J.C., et al. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol, 2003. 27: 612.

https://pubmed.ncbi.nlm.nih.gov/12717246/

191.Patard, J.J., et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol, 2005. 23: 2763.

https://pubmed.ncbi.nlm.nih.gov/15837991/

192.Capitanio, U., et al. A critical assessment of the prognostic value of clear cell, papillary and chromophobe histological subtypes in renal cell carcinoma: a population-based study. BJU Int, 2009. 103: 1496.

https://pubmed.ncbi.nlm.nih.gov/19076149/

193.Wagener, N., et al. Outcome of papillary versus clear cell renal cell carcinoma varies significantly in non-metastatic disease. PLoS One, 2017. 12: e0184173.

https://pubmed.ncbi.nlm.nih.gov/28934212/

194.Linehan, W.M., et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med, 2016. 374: 135.

https://pubmed.ncbi.nlm.nih.gov/26536169/

195.Wong, E.C.L., et al. Morphologic subtyping as a prognostic predictor for survival in papillary renal cell carcinoma: Type 1 vs. type 2. Urol Oncol, 2019. 37: 721.

https://pubmed.ncbi.nlm.nih.gov/31176614/

196.Klatte, T., et al. The VENUSS prognostic model to predict disease recurrence following surgery for non-metastatic papillary renal cell carcinoma: Development and evaluation using the ASSURE prospective clinical trial cohort. BMC Medicine, 2019. 17: 182.

https://pubmed.ncbi.nlm.nih.gov/31578141/

197.Deng, J., et al. A comparison of the prognosis of papillary and clear cell renal cell carcinoma: Evidence from a meta-analysis. Medicine (Baltimore), 2019. 98: e16309.

https://pubmed.ncbi.nlm.nih.gov/31277173/

198.Yang, C., et al. High WHO/ISUP Grade and Unfavorable Architecture, Rather Than Typing of Papillary Renal Cell Carcinoma, May Be Associated With Worse Prognosis. Am J Surg Pathol, 2020. 44: 582.

https://pubmed.ncbi.nlm.nih.gov/32101890/

199.Klatte, T., et al. Renal cell carcinoma associated with transcription factor E3 expression and Xp11.2 translocation: incidence, characteristics, and prognosis. Am J Clin Pathol, 2012. 137: 761.

https://pubmed.ncbi.nlm.nih.gov/22523215/

200.Linehan, W.M., et al. Genetic basis of cancer of the kidney: disease-specific approaches to therapy. Clin Cancer Res, 2004. 10: 6282S.

https://pubmed.ncbi.nlm.nih.gov/15448018/

201.Yang, X.J., et al. A molecular classification of papillary renal cell carcinoma. Cancer Res, 2005.
65: 5628.

https://pubmed.ncbi.nlm.nih.gov/15994935/

202.Furge, K.A., et al. Identification of deregulated oncogenic pathways in renal cell carcinoma: an integrated oncogenomic approach based on gene expression profiling. Oncogene, 2007. 26: 1346.

https://pubmed.ncbi.nlm.nih.gov/17322920/

203.Boissier, R., et al. Long-term oncological outcomes of cystic renal cell carcinoma according to the Bosniak classification. International Urology and Nephrology, 2019. 51: 951.

https://pubmed.ncbi.nlm.nih.gov/30977021/

204.Wahlgren, T., et al. Treatment and overall survival in renal cell carcinoma: a Swedish population-based study (2000-2008). Br J Cancer, 2013. 108: 1541.

https://pubmed.ncbi.nlm.nih.gov/23531701/

205.Li, P., et al. Survival among patients with advanced renal cell carcinoma in the pretargeted versus targeted therapy eras. Cancer Med, 2016. 5: 169.

https://pubmed.ncbi.nlm.nih.gov/26645975/

206.Golijanin, B., et al. The natural history of renal cell carcinoma with isolated lymph node metastases following surgical resection from 2006 to 2013. Urol Oncol, 2019. 37: 932.

https://pubmed.ncbi.nlm.nih.gov/31570248/

207.Fukuda, S., et al. Impact of C-reactive protein flare-response on oncological outcomes in patients with metastatic renal cell carcinoma treated with nivolumab. J Immunother Cancer, 2021. 9.

https://pubmed.ncbi.nlm.nih.gov/33602695/

208.Lee, Z., et al. Local Recurrence Following Resection of Intermediate-High Risk Nonmetastatic Renal Cell Carcinoma: An Anatomical Classification and Analysis of the ASSURE (ECOG-ACRIN E2805) Adjuvant Trial. J Urol, 2020. 203: 684.

https://pubmed.ncbi.nlm.nih.gov/31596672/

209.Bensalah, K., et al. Prognostic value of thrombocytosis in renal cell carcinoma. J Urol, 2006. 175: 859.

https://pubmed.ncbi.nlm.nih.gov/16469566/

210.Kim, H.L., et al. Cachexia-like symptoms predict a worse prognosis in localized t1 renal cell carcinoma. J Urol, 2004. 171: 1810.

https://pubmed.ncbi.nlm.nih.gov/15076282/

211.Patard, J.J., et al. Multi-institutional validation of a symptom based classification for renal cell carcinoma. J Urol, 2004. 172: 858.

https://pubmed.ncbi.nlm.nih.gov/15310983/

212.Cho, D.S., et al. Prognostic significance of modified Glasgow Prognostic Score in patients with non-metastatic clear cell renal cell carcinoma. Scand J Urol, 2016. 50: 186.

https://pubmed.ncbi.nlm.nih.gov/26878156/

213.Patel, A., et al. Neutrophil-to-Lymphocyte Ratio as a Prognostic Factor of Disease-free Survival in Postnephrectomy High-risk Locoregional Renal Cell Carcinoma: Analysis of the S-TRAC Trial. Clin Cancer Res, 2020. 26: 4863.

https://pubmed.ncbi.nlm.nih.gov/32546645/

214.Shao, Y., et al. Prognostic value of pretreatment neutrophil-to-lymphocyte ratio in renal cell carcinoma: a systematic review and meta-analysis. BMC Urol, 2020. 20: 90.

https://pubmed.ncbi.nlm.nih.gov/32631294/

215.Albiges, L., et al. Body Mass Index and Metastatic Renal Cell Carcinoma: Clinical and Biological Correlations. J Clin Oncol, 2016. 34: 3655.

https://pubmed.ncbi.nlm.nih.gov/27601543/

216.Donin, N.M., et al. Body Mass Index and Survival in a Prospective Randomized Trial of Localized High-Risk Renal Cell Carcinoma. Cancer Epidemiol Biomarkers Prev, 2016. 25: 1326.

https://pubmed.ncbi.nlm.nih.gov/27418270/

217.Petrelli, F., et al. Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open, 2021. 4: e213520.

https://pubmed.ncbi.nlm.nih.gov/33779745/

218.Bagheri, M., et al. Renal cell carcinoma survival and body mass index: a dose-response meta-analysis reveals another potential paradox within a paradox. Int J Obes (Lond), 2016. 40: 1817.

https://pubmed.ncbi.nlm.nih.gov/27686524/

219.Dai, J., et al. The prognostic value of body fat components in metastasis renal cell carcinoma patients treated with TKIs. Cancer Management and Research, 2020. 12: 891.

https://pubmed.ncbi.nlm.nih.gov/32104071/

220.Tsutsumi, T., et al. Distinct effect of body mass index by sex as a prognostic factor in localized renal cell carcinoma treated with nephrectomy ~ data from a multi-institutional study in Japan ~. BMC Cancer, 2021. 21: 201.

https://pubmed.ncbi.nlm.nih.gov/33639880/

221.A Phase 3, Randomized, Open-Label Study of Nivolumab Combined With Ipilimumab Versus Sunitinib Monotherapy in Subjects With Previously Untreated, Advanced or Metastatic Renal Cell Carcinoma. NCT02231749. Access date January 2023.

https://clinicaltrials.gov/ct2/show/NCT02231749

222.Fan, D., et al. Prognostic significance of PI3K/AKT/ mTOR signaling pathway members in clear cell renal cell carcinoma. PeerJ, 2020. 8: e9261.

https://pubmed.ncbi.nlm.nih.gov/32547875/

223.Sim, S.H., et al. Prognostic utility of pre-operative circulating osteopontin, carbonic anhydrase IX and CRP in renal cell carcinoma. Br J Cancer, 2012. 107: 1131.

https://pubmed.ncbi.nlm.nih.gov/22918393/

224.Sabatino, M., et al. Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J Clin Oncol, 2009. 27: 2645.

https://pubmed.ncbi.nlm.nih.gov/19364969/

225.Li, G., et al. Serum carbonic anhydrase 9 level is associated with postoperative recurrence of conventional renal cell cancer. J Urol, 2008. 180: 510.

https://pubmed.ncbi.nlm.nih.gov/18550116/

226.Choueiri, T.K., et al. A phase I study of cabozantinib (XL184) in patients with renal cell cancer. Ann Oncol, 2014. 25: 1603.

https://pubmed.ncbi.nlm.nih.gov/24827131/

227.Raimondi, A., et al. Predictive Biomarkers of Response to Immunotherapy in Metastatic Renal Cell Cancer. Front Oncol, 2020. 10: 1644.

https://pubmed.ncbi.nlm.nih.gov/32903369/

228.Ueda, K., et al. The Prognostic Value of Systemic Inflammatory Markers in Advanced Renal Cell Carcinoma Patients Treated With Molecular Targeted Therapies. Anticancer Res, 2020. 40: 1739.

https://pubmed.ncbi.nlm.nih.gov/32132082/

229.Motzer, R.J., et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat Med, 2020. 26: 1733.

https://pubmed.ncbi.nlm.nih.gov/32895571/

230.Rini, B.I., et al. Molecular correlates differentiate response to atezolizumab+ bevacizumab vs sunitinib: results from a phase III study (IMmotion151) in untreated metastatic renal cell carcinoma. Ann Oncol, 2018. 29: LBA31.

https://www.annalsofoncology.org/article/S0923-7534(19)50428-8/fulltext

231.Scelo, G., et al. KIM-1 as a Blood-Based Marker for Early Detection of Kidney Cancer: A Prospective Nested Case-Control Study. Clin Cancer Res, 2018. 24: 5594.

https://pubmed.ncbi.nlm.nih.gov/30037816/

232.Zhang, K.J., et al. Diagnostic role of kidney injury molecule-1 in renal cell carcinoma. Int Urol Nephrol, 2019. 51: 1893.

https://pubmed.ncbi.nlm.nih.gov/31385177/

233.Minardi, D., et al. Loss of nuclear BAP1 protein expression is a marker of poor prognosis in patients with clear cell renal cell carcinoma. Urol Oncol, 2016. 34: 338 e11.

https://pubmed.ncbi.nlm.nih.gov/27085487/

234.Kapur, P., et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol, 2013. 14: 159.

https://pubmed.ncbi.nlm.nih.gov/23333114/

235.Joseph, R.W., et al. Clear Cell Renal Cell Carcinoma Subtypes Identified by BAP1 and PBRM1 Expression. J Urol, 2016. 195: 180.

https://pubmed.ncbi.nlm.nih.gov/26300218/

236.Klatte, T., et al. Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. J Clin Oncol, 2009. 27: 746.

https://pubmed.ncbi.nlm.nih.gov/19124809/

237.Turajlic, S., et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell, 2018. 173: 581.

https://pubmed.ncbi.nlm.nih.gov/29656895/

238.Kroeger, N., et al. Deletions of chromosomes 3p and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer, 2013. 119: 1547.

https://pubmed.ncbi.nlm.nih.gov/23335244/

239.Rini, B., et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol, 2015. 16: 676.

https://pubmed.ncbi.nlm.nih.gov/25979595/

240.Sorbellini, M., et al. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol, 2005. 173: 48.

https://pubmed.ncbi.nlm.nih.gov/15592023/

241.Zisman, A., et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol, 2001. 19: 1649.

https://pubmed.ncbi.nlm.nih.gov/11250993/

242.Frank, I., et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol, 2002. 168: 2395.

https://pubmed.ncbi.nlm.nih.gov/12441925/

243.Leibovich, B.C., et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer, 2003. 97: 1663.

https://pubmed.ncbi.nlm.nih.gov/12655523/

244.Patard, J.J., et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study. J Clin Oncol, 2004.
22: 3316.

https://pubmed.ncbi.nlm.nih.gov/15310775/

245.Karakiewicz, P.I., et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol, 2007. 25: 1316.

https://pubmed.ncbi.nlm.nih.gov/17416852/

246.Zigeuner, R., et al. External validation of the Mayo Clinic stage, size, grade, and necrosis (SSIGN) score for clear-cell renal cell carcinoma in a single European centre applying routine pathology. Eur Urol, 2010. 57: 102.

https://pubmed.ncbi.nlm.nih.gov/19062157/

247.Rosiello, G., et al. Head-to-head comparison of all the prognostic models recommended by the European Association of Urology Guidelines to predict oncologic outcomes in patients with renal cell carcinoma. Urol Oncol, 2022. 40: 271.e19.

https://pubmed.ncbi.nlm.nih.gov/35140049/

248.Okita, K., et al. Impact of Disagreement Between Two Risk Group Models on Prognosis in Patients With Metastatic Renal-Cell Carcinoma. Clin Genitourin Cancer, 2019. 17: e440.

https://pubmed.ncbi.nlm.nih.gov/30772204/

249.Massari, F., et al. Addition of Primary Metastatic Site on Bone, Brain, and Liver to IMDC Criteria in Patients With Metastatic Renal Cell Carcinoma: A Validation Study. Clin Genitourin Cancer, 2021. 19: 32.

https://pubmed.ncbi.nlm.nih.gov/32694008/

250.Kang, M., et al. Prognostic Impact of Bone Metastasis on Survival Outcomes in Patients with Metastatic Renal Cell Carcinoma Treated by First Line Tyrosine Kinase Inhibitors: A Propensity-Score Matching Analysis. J Cancer, 2020. 11: 7202.

https://pubmed.ncbi.nlm.nih.gov/33193883/

251.Guida, A., et al. Identification of international metastatic renal cell carcinoma database consortium (IMDC) intermediate-risk subgroups in patients with metastatic clear-cell renal cell carcinoma. Oncotarget, 2020. 11: 4582.

https://pubmed.ncbi.nlm.nih.gov/33346231/

252.Zisman, A., et al. Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J Clin Oncol, 2002. 20: 4559.

https://pubmed.ncbi.nlm.nih.gov/12454113/

253.Leibovich, B.C., et al. Predicting Oncologic Outcomes in Renal Cell Carcinoma After Surgery. Eur Urol, 2018. 73: 772.

https://pubmed.ncbi.nlm.nih.gov/29398265/

254.Erdem, S., et al. External validation of the VENUSS prognostic model to predict recurrence after surgery in non-metastatic papillary renal cell carcinoma: A multi-institutional analysis. Urol Oncol, 2022. 40: 198.e9.

https://pubmed.ncbi.nlm.nih.gov/35172939/

255.Buti, S., et al. Validation of a new prognostic model to easily predict outcome in renal cell carcinoma: the GRANT score applied to the ASSURE trial population. Ann Oncol, 2017. 28: 2747.

https://pubmed.ncbi.nlm.nih.gov/28945839/

256.Motzer, R.J., et al. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol, 2002. 20: 289.

https://pubmed.ncbi.nlm.nih.gov/11773181/

257.Karnofsky, D., Abelmann, WH. The use of the nitrogen mustards in the palliative treatment of carcinoma. With particular reference to bronchogenic carcinoma. Cancer 1948. 1: 634.

https://acsjournals.onlinelibrary.wiley.com/doi/10.1002/1097-0142%28194811%291%3A4%3C634 %3A%3AAID-CNCR2820010410%3E3.0.CO%3B2-L

258.Heng, D.Y., et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. Lancet Oncol, 2013. 14: 141.

https://pubmed.ncbi.nlm.nih.gov/23312463/

259.MacLennan, S., et al. Systematic review of perioperative and quality-of-life outcomes following surgical management of localised renal cancer. Eur Urol, 2012. 62: 1097.

https://pubmed.ncbi.nlm.nih.gov/22841673/

260.Kunath, F., et al. Partial nephrectomy versus radical nephrectomy for clinical localised renal masses. Cochrane Database Syst Rev, 2017. 5: CD012045.

https://pubmed.ncbi.nlm.nih.gov/28485814/

261.Van Poppel, H., et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol, 2011. 59: 543.

https://pubmed.ncbi.nlm.nih.gov/21186077/

262.Thompson, R.H., et al. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J Urol, 2008. 179: 468.

https://pubmed.ncbi.nlm.nih.gov/18076931/

263.Huang, W.C., et al. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors--is there a difference in mortality and cardiovascular outcomes? J Urol, 2009. 181: 55.

https://pubmed.ncbi.nlm.nih.gov/19012918/

264.Miller, D.C., et al. Renal and cardiovascular morbidity after partial or radical nephrectomy. Cancer, 2008. 112: 511.

https://pubmed.ncbi.nlm.nih.gov/18072263/

265.Capitanio, U., et al. Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a-T1b renal mass and normal preoperative renal function. Eur Urol, 2015. 67: 683.

https://pubmed.ncbi.nlm.nih.gov/25282367/

266.Scosyrev, E., et al. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol, 2014. 65: 372.

https://pubmed.ncbi.nlm.nih.gov/23850254/

267.Kates, M., et al. Increased risk of overall and cardiovascular mortality after radical nephrectomy for renal cell carcinoma 2 cm or less. J Urol, 2011. 186: 1247.

https://pubmed.ncbi.nlm.nih.gov/21849201/

268.Thompson, R.H., et al. Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur Urol, 2015. 67: 252.

https://pubmed.ncbi.nlm.nih.gov/25108580/

269.Sun, M., et al. Management of localized kidney cancer: calculating cancer-specific mortality and competing risks of death for surgery and nonsurgical management. Eur Urol, 2014. 65: 235.

https://pubmed.ncbi.nlm.nih.gov/23567066/

270.Sun, M., et al. Comparison of partial vs radical nephrectomy with regard to other-cause mortality in T1 renal cell carcinoma among patients aged >/=75 years with multiple comorbidities. BJU Int, 2013. 111: 67.

https://pubmed.ncbi.nlm.nih.gov/22612472/

271.Shuch, B., et al. Overall survival advantage with partial nephrectomy: a bias of observational data? Cancer, 2013. 119: 2981.

https://pubmed.ncbi.nlm.nih.gov/23674264/

272.Lane, B.R., et al. Survival and Functional Stability in Chronic Kidney Disease Due to Surgical Removal of Nephrons: Importance of the New Baseline Glomerular Filtration Rate. Eur Urol, 2015. 68: 996.

https://pubmed.ncbi.nlm.nih.gov/26012710/

273.Van Poppel, H., et al. A prospective randomized EORTC intergroup phase 3 study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol, 2007. 51: 1606.

https://pubmed.ncbi.nlm.nih.gov/17140723/

274.Poulakis, V., et al. Quality of life after surgery for localized renal cell carcinoma: comparison between radical nephrectomy and nephron-sparing surgery. Urology, 2003. 62: 814.

https://pubmed.ncbi.nlm.nih.gov/14624900/

275.Mir, M.C., et al. Partial Nephrectomy Versus Radical Nephrectomy for Clinical T1b and T2 Renal Tumors: A Systematic Review and Meta-analysis of Comparative Studies. Eur Urol, 2017. 71: 606.

https://pubmed.ncbi.nlm.nih.gov/27614693/

276.Janssen, M.W.W., et al. Survival outcomes in patients with large (>/=7cm) clear cell renal cell carcinomas treated with nephron-sparing surgery versus radical nephrectomy: Results of a multicenter cohort with long-term follow-up. PLoS One, 2018. 13: e0196427.

https://pubmed.ncbi.nlm.nih.gov/29723225/

277.Patel, S.H., et al. Oncologic and Functional Outcomes of Radical and Partial Nephrectomy in pT3a Pathologically Upstaged Renal Cell Carcinoma: A Multi-institutional Analysis. Clin Genitourin Cancer, 2020. 18: e723.

https://pubmed.ncbi.nlm.nih.gov/32600941/

278.Shah, P.H., et al. Partial Nephrectomy is Associated with Higher Risk of Relapse Compared with Radical Nephrectomy for Clinical Stage T1 Renal Cell Carcinoma Pathologically Up Staged to T3a.
J Urol, 2017. 198: 289.

https://pubmed.ncbi.nlm.nih.gov/28274620/

279.Liu, H., et al. A meta-analysis for comparison of partial nephrectomy vs. radical nephrectomy in patients with pT3a renal cell carcinoma. Transl Androl Urol, 2021. 10: 1170.

https://pubmed.ncbi.nlm.nih.gov/33850752/

280.Lane, B.R., et al. Management of the adrenal gland during partial nephrectomy. J Urol, 2009.
181: 2430.

https://pubmed.ncbi.nlm.nih.gov/19371896/

281.Bekema, H.J., et al. Systematic review of adrenalectomy and lymph node dissection in locally advanced renal cell carcinoma. Eur Urol, 2013. 64: 799.

https://pubmed.ncbi.nlm.nih.gov/23643550/

282.Blom, J.H., et al. Radical nephrectomy with and without lymph-node dissection: final results of European Organization for Research and Treatment of Cancer (EORTC) randomized phase 3 trial 30881. Eur Urol, 2009. 55: 28.

https://pubmed.ncbi.nlm.nih.gov/18848382/

283.Capitanio, U., et al. Lymph node dissection in renal cell carcinoma. Eur Urol, 2011. 60: 1212.

https://pubmed.ncbi.nlm.nih.gov/21940096/

284.Gershman, B., et al. Radical Nephrectomy with or without Lymph Node Dissection for High Risk Nonmetastatic Renal Cell Carcinoma: A Multi-Institutional Analysis. J Urol, 2018. 199: 1143.

https://pubmed.ncbi.nlm.nih.gov/29225056/

285.Kim S, T.H., Weight C, et al. The relationship of lymph node dissection with recurrence and survival for patients treated with nephrectomy for high-risk renal cell carcinoma. J Urol, 2012. 187: e233.

https://www.auajournals.org/doi/10.1016/j.juro.2012.02.649

286.Dimashkieh, H.H., et al. Extranodal extension in regional lymph nodes is associated with outcome in patients with renal cell carcinoma. J Urol, 2006. 176: 1978.

https://pubmed.ncbi.nlm.nih.gov/17070225/

287.Terrone, C., et al. Reassessing the current TNM lymph node staging for renal cell carcinoma. Eur Urol, 2006. 49: 324.

https://pubmed.ncbi.nlm.nih.gov/16386352/

288.Whitson, J.M., et al. Lymphadenectomy improves survival of patients with renal cell carcinoma and nodal metastases. J Urol, 2011. 185: 1615.

https://pubmed.ncbi.nlm.nih.gov/21419453/

289.Capitanio, U., et al. Extent of lymph node dissection at nephrectomy affects cancer-specific survival and metastatic progression in specific sub-categories of patients with renal cell carcinoma (RCC). BJU Int, 2014. 114: 210.

https://pubmed.ncbi.nlm.nih.gov/24854206/

290.Gershman, B., et al. Perioperative Morbidity of Lymph Node Dissection for Renal Cell Carcinoma: A Propensity Score-based Analysis. Eur Urol, 2018. 73: 469.

https://pubmed.ncbi.nlm.nih.gov/29132713/

291.Herrlinger, A., et al. What are the benefits of extended dissection of the regional renal lymph nodes in the therapy of renal cell carcinoma. J Urol, 1991. 146: 1224.

https://pubmed.ncbi.nlm.nih.gov/1942267/

292.Chapin, B.F., et al. The role of lymph node dissection in renal cell carcinoma. Int J Clin Oncol, 2011. 16: 186.

https://pubmed.ncbi.nlm.nih.gov/21523561/

293.Kwon, T., et al. Reassessment of renal cell carcinoma lymph node staging: analysis of patterns of progression. Urology, 2011. 77: 373.

https://pubmed.ncbi.nlm.nih.gov/20817274/

294.Bex, A., et al. Intraoperative sentinel node identification and sampling in clinically node-negative renal cell carcinoma: initial experience in 20 patients. World J Urol, 2011. 29: 793.

https://pubmed.ncbi.nlm.nih.gov/21107845/

295.Sherif, A.M., et al. Sentinel node detection in renal cell carcinoma. A feasibility study for detection of tumour-draining lymph nodes. BJU Int, 2012. 109: 1134.

https://pubmed.ncbi.nlm.nih.gov/21883833/

296.May, M., et al. Pre-operative renal arterial embolisation does not provide survival benefit in patients with radical nephrectomy for renal cell carcinoma. Br J Radiol, 2009. 82: 724.

https://pubmed.ncbi.nlm.nih.gov/19255117/

297.Subramanian, V.S., et al. Utility of preoperative renal artery embolization for management of renal tumors with inferior vena caval thrombi. Urology, 2009. 74: 154.

https://pubmed.ncbi.nlm.nih.gov/19428069/

298.Maxwell, N.J., et al. Renal artery embolisation in the palliative treatment of renal carcinoma. Br
J Radiol, 2007. 80: 96.

https://pubmed.ncbi.nlm.nih.gov/17495058/

299.Lamb, G.W., et al. Management of renal masses in patients medically unsuitable for nephrectomy--natural history, complications, and outcome. Urology, 2004. 64: 909.

https://pubmed.ncbi.nlm.nih.gov/15533476/

300.Brewer, K., et al. Perioperative and renal function outcomes of minimally invasive partial nephrectomy for T1b and T2a kidney tumors. J Endourol, 2012. 26: 244.

https://pubmed.ncbi.nlm.nih.gov/22192099/

301.Sprenkle, P.C., et al. Comparison of open and minimally invasive partial nephrectomy for renal tumors 4-7 centimeters. Eur Urol, 2012. 61: 593.

https://pubmed.ncbi.nlm.nih.gov/22154728/

302.Peng B, et al. Retroperitoneal laparoscopic nephrectomy and open nephrectomy for radical treatment of renal cell carcinoma: A comparison of clinical outcomes. Academic Journal of Second Military Medical University, 2006. 12: 1167.

https://pesquisa.bvsalud.org/portal/resource/pt/wpr-841262

303.Steinberg, A.P., et al. Laparoscopic radical nephrectomy for large (greater than 7 cm, T2) renal tumors. J Urol, 2004. 172: 2172.

https://pubmed.ncbi.nlm.nih.gov/15538225/

304.Dursun, F., et al. Survival after minimally invasive vs. open radical nephrectomy for stage I and II renal cell carcinoma. Int J Clin Oncol, 2022. 27: 1068.

https://pubmed.ncbi.nlm.nih.gov/35319076/

305.Gratzke, C., et al. Quality of life and perioperative outcomes after retroperitoneoscopic radical nephrectomy (RN), open RN and nephron-sparing surgery in patients with renal cell carcinoma. BJU Int, 2009. 104: 470.

https://pubmed.ncbi.nlm.nih.gov/19239445/

306.Hemal, A.K., et al. Laparoscopic versus open radical nephrectomy for large renal tumors: a long-term prospective comparison. J Urol, 2007. 177: 862.

https://pubmed.ncbi.nlm.nih.gov/17296361/

307.Laird, A., et al. Matched pair analysis of laparoscopic versus open radical nephrectomy for the treatment of T3 renal cell carcinoma. World J Urol, 2015. 33: 25.

https://pubmed.ncbi.nlm.nih.gov/24647880/

308.Patel, P., et al. A Multicentered, Propensity Matched Analysis Comparing Laparoscopic and Open Surgery for pT3a Renal Cell Carcinoma. J Endourol, 2017. 31: 645.

https://pubmed.ncbi.nlm.nih.gov/28381117/

309.Desai, M.M., et al. Prospective randomized comparison of transperitoneal versus retroperitoneal laparoscopic radical nephrectomy. J Urol, 2005. 173: 38.

https://pubmed.ncbi.nlm.nih.gov/15592021/

310.Nambirajan, T., et al. Prospective, randomized controlled study: transperitoneal laparoscopic versus retroperitoneoscopic radical nephrectomy. Urology, 2004. 64: 919.

https://pubmed.ncbi.nlm.nih.gov/15533478/

311.Nadler, R.B., et al. A prospective study of laparoscopic radical nephrectomy for T1 tumors--is transperitoneal, retroperitoneal or hand assisted the best approach? J Urol, 2006. 175: 1230.

https://pubmed.ncbi.nlm.nih.gov/16515966/

312.Gabr, A.H., et al. Approach and specimen handling do not influence oncological perioperative and long-term outcomes after laparoscopic radical nephrectomy. J Urol, 2009. 182: 874.

https://pubmed.ncbi.nlm.nih.gov/19616234/

313.Jeong, I.G., et al. Association of Robotic-Assisted vs Laparoscopic Radical Nephrectomy With Perioperative Outcomes and Health Care Costs, 2003 to 2015. JAMA, 2017. 318: 1561.

https://pubmed.ncbi.nlm.nih.gov/29067427/

314.Li, J., et al. Comparison of Perioperative Outcomes of Robot-Assisted vs. Laparoscopic Radical Nephrectomy: A Systematic Review and Meta-Analysis. Front Oncol, 2020. 10: 551052.

https://pubmed.ncbi.nlm.nih.gov/33072578/

315.Asimakopoulos, A.D., et al. Robotic radical nephrectomy for renal cell carcinoma: a systematic review. BMC Urol, 2014. 14: 75.

https://pubmed.ncbi.nlm.nih.gov/25234265/

316.Soga, N., et al. Comparison of radical nephrectomy techniques in one center: minimal incision portless endoscopic surgery versus laparoscopic surgery. Int J Urol, 2008. 15: 1018.

https://pubmed.ncbi.nlm.nih.gov/19138194/

317.Park Y, et al. Laparoendoscopic single-site radical nephrectomy for localized renal cell carcinoma: comparison with conventional laparoscopic surgery. J Endourol 2009. 23: A19.

https://pubmed.ncbi.nlm.nih.gov/20370595/

318.Gill, I.S., et al. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol, 2007. 178: 41.

https://pubmed.ncbi.nlm.nih.gov/17574056/

319.Lane, B.R., et al. 7-year oncological outcomes after laparoscopic and open partial nephrectomy.
J Urol, 2010. 183: 473.

https://pubmed.ncbi.nlm.nih.gov/20006866/

320.Gong, E.M., et al. Comparison of laparoscopic and open partial nephrectomy in clinical T1a renal tumors. J Endourol, 2008. 22: 953.

https://pubmed.ncbi.nlm.nih.gov/18363510/

321.Marszalek, M., et al. Laparoscopic and open partial nephrectomy: a matched-pair comparison of 200 patients. Eur Urol, 2009. 55: 1171.

https://pubmed.ncbi.nlm.nih.gov/19232819/

322.Kaneko, G., et al. The benefit of laparoscopic partial nephrectomy in high body mass index patients. Jpn J Clin Oncol, 2012. 42: 619.

https://pubmed.ncbi.nlm.nih.gov/22561514/

323.Muramaki, M., et al. Prognostic Factors Influencing Postoperative Development of Chronic Kidney Disease in Patients with Small Renal Tumors who Underwent Partial Nephrectomy. Curr Urol, 2013. 6: 129.

https://pubmed.ncbi.nlm.nih.gov/24917730/

324.Guglielmetti, G.B., et al. A Prospective, Randomized Trial Comparing the Outcomes of Open vs Laparoscopic Partial Nephrectomy. J Urol, 2022. 208: 259.

https://pubmed.ncbi.nlm.nih.gov/35404109/

325.Tugcu, V., et al. Transperitoneal versus retroperitoneal laparoscopic partial nephrectomy: initial experience. Arch Ital Urol Androl, 2011. 83: 175.

https://pubmed.ncbi.nlm.nih.gov/22670314/

326.Minervini, A., et al. Simple enucleation is equivalent to traditional partial nephrectomy for renal cell carcinoma: results of a nonrandomized, retrospective, comparative study. J Urol, 2011. 185: 1604.

https://pubmed.ncbi.nlm.nih.gov/21419454/

327.Bazzi, W.M., et al. Comparison of laparoendoscopic single-site and multiport laparoscopic radical and partial nephrectomy: a prospective, nonrandomized study. Urology, 2012. 80: 1039.

https://pubmed.ncbi.nlm.nih.gov/22990064/

328.Masson-Lecomte, A., et al. A prospective comparison of the pathologic and surgical outcomes obtained after elective treatment of renal cell carcinoma by open or robot-assisted partial nephrectomy. Urol Oncol, 2013. 31: 924.

https://pubmed.ncbi.nlm.nih.gov/21906969/

329.Peyronnet, B., et al. Comparison of 1800 Robotic and Open Partial Nephrectomies for Renal Tumors. Ann Surg Oncol, 2016. 23: 4277.

https://pubmed.ncbi.nlm.nih.gov/27411552/

330.Nisen, H., et al. Hand-assisted laparoscopic versus open partial nephrectomy in patients with T1 renal tumor: Comparative perioperative, functional and oncological outcome. Scand J Urol, 2015: 49: 446.

https://pubmed.ncbi.nlm.nih.gov/26317448/

331.Chang, K.D., et al. Functional and oncological outcomes of open, laparoscopic and robot-assisted partial nephrectomy: a multicentre comparative matched-pair analyses with a median of 5 years’ follow-up. BJU Int, 2018. 122: 618.

https://pubmed.ncbi.nlm.nih.gov/29645344/

332.Alimi, Q., et al. Comparison of Short-Term Functional, Oncological, and Perioperative Outcomes Between Laparoscopic and Robotic Partial Nephrectomy Beyond the Learning Curve.
J Laparoendosc Adv Surg Tech A, 2018. 28: 1047.

https://pubmed.ncbi.nlm.nih.gov/29664692/

333.Choi, J.E., et al. Comparison of perioperative outcomes between robotic and laparoscopic partial nephrectomy: a systematic review and meta-analysis. Eur Urol, 2015. 67: 891.

https://pubmed.ncbi.nlm.nih.gov/25572825/

334.Hinata, N., et al. Robot-assisted partial nephrectomy versus standard laparoscopic partial nephrectomy for renal hilar tumor: A prospective multi-institutional study. Int J Urol, 2021. 28: 382.

https://pubmed.ncbi.nlm.nih.gov/33368639/

335.Porpiglia, F., et al. Transperitoneal vs retroperitoneal minimally invasive partial nephrectomy: comparison of perioperative outcomes and functional follow-up in a large multi-institutional cohort (The RECORD 2 Project). Surg Endosc, 2021. 35: 4295.

https://pubmed.ncbi.nlm.nih.gov/32856156/

336.Carbonara, U., et al. Retroperitoneal Robot-assisted Partial Nephrectomy: A Systematic Review and Pooled Analysis of Comparative Outcomes. Eur Urol Open Sci, 2022. 40: 27.

https://pubmed.ncbi.nlm.nih.gov/35515269/

337.Minervini, A., et al. Impact of Resection Technique on Perioperative Outcomes and Surgical Margins after Partial Nephrectomy for Localized Renal Masses: A Prospective Multicenter Study. J Urol, 2020. 203: 496.

https://pubmed.ncbi.nlm.nih.gov/31609167/

338.Arora, S., et al. What is the hospital volume threshold to optimize inpatient complication rate after partial nephrectomy? Urol Oncol, 2018. 36: 339.e17.

https://pubmed.ncbi.nlm.nih.gov/29773492/

339.Xia, L., et al. Hospital volume and outcomes of robot-assisted partial nephrectomy. BJU Int, 2018. 121: 900.

https://pubmed.ncbi.nlm.nih.gov/29232025/

340.Peyronnet, B., et al. Impact of hospital volume and surgeon volume on robot-assisted partial nephrectomy outcomes: a multicentre study. BJU Int, 2018. 121: 916.

https://pubmed.ncbi.nlm.nih.gov/29504226/

341.Schiavina, R., et al. Predicting positive surgical margins in partial nephrectomy: A prospective multicentre observational study (the RECORd 2 project). Eur J Surg Oncol, 2020. 46: 1353.

https://pubmed.ncbi.nlm.nih.gov/32007380/

342.Shanmugasundaram, S., et al. Preoperative embolization of renal cell carcinoma prior to partial nephrectomy: A systematic review and meta-analysis. Clin Imaging, 2021. 76: 205.

https://pubmed.ncbi.nlm.nih.gov/33964598/

343.Tabayoyong, W., et al. Variation in Surgical Margin Status by Surgical Approach among Patients Undergoing Partial Nephrectomy for Small Renal Masses. J Urol, 2015. 194: 1548.

https://pubmed.ncbi.nlm.nih.gov/26094808/

344.Porpiglia, F., et al. Partial Nephrectomy in Clinical T1b Renal Tumors: Multicenter Comparative Study of Open, Laparoscopic and Robot-assisted Approach (the RECORd Project). Urology, 2016. 89: 45.

https://pubmed.ncbi.nlm.nih.gov/26743388/

345.Steinestel, J., et al. Positive surgical margins in nephron-sparing surgery: risk factors and therapeutic consequences. World J Surg Oncol, 2014. 12: 252.

https://pubmed.ncbi.nlm.nih.gov/25103683/

346.Wood, E.L., et al. Local Tumor Bed Recurrence Following Partial Nephrectomy in Patients with Small Renal Masses. J Urol, 2018. 199: 393.

https://pubmed.ncbi.nlm.nih.gov/28941919/

347.Bensalah, K., et al. Positive surgical margin appears to have negligible impact on survival of renal cell carcinomas treated by nephron-sparing surgery. Eur Urol, 2010. 57: 466.

https://pubmed.ncbi.nlm.nih.gov/19359089/

348.Lopez-Costea, M.A., et al. Oncological outcomes and prognostic factors after nephron-sparing surgery in renal cell carcinoma. Int Urol Nephrol, 2016. 48: 681.

https://pubmed.ncbi.nlm.nih.gov/26861062/

349.Shah, P.H., et al. Positive Surgical Margins Increase Risk of Recurrence after Partial Nephrectomy for High Risk Renal Tumors. J Urol, 2016. 196: 327.

https://pubmed.ncbi.nlm.nih.gov/26907508/

350.Tellini, R., et al. Positive Surgical Margins Predict Progression-free Survival After Nephron-sparing Surgery for Renal Cell Carcinoma: Results From a Single Center Cohort of 459 Cases With a Minimum Follow-up of 5 Years. Clin Genitourin Cancer, 2019. 17: e26.

https://pubmed.ncbi.nlm.nih.gov/30266249/

351.Ryan, S.T., et al. Impact of positive surgical margins on survival after partial nephrectomy in localized kidney cancer: analysis of the National Cancer Database. Minerva Urol Nephrol, 2021.
73: 233.

https://pubmed.ncbi.nlm.nih.gov/32748614/

352.Sundaram, V., et al. Positive margin during partial nephrectomy: does cancer remain in the renal remnant? Urology, 2011. 77: 1400.

https://pubmed.ncbi.nlm.nih.gov/21411126/

353.Kim, S.P., et al. Treatment of Patients with Positive Margins after Partial Nephrectomy. J Urol, 2016. 196: 301.

https://pubmed.ncbi.nlm.nih.gov/27188474/

354.Antic, T., et al. Partial nephrectomy for renal tumors: lack of correlation between margin status and local recurrence. Am J Clin Pathol, 2015. 143: 645.

https://pubmed.ncbi.nlm.nih.gov/25873497/

355.Lane, B.R., et al. Active treatment of localized renal tumors may not impact overall survival in patients aged 75 years or older. Cancer, 2010. 116: 3119.

https://pubmed.ncbi.nlm.nih.gov/20564627/

356.Hollingsworth, J.M., et al. Five-year survival after surgical treatment for kidney cancer: a population-based competing risk analysis. Cancer, 2007. 109: 1763.

https://pubmed.ncbi.nlm.nih.gov/17351954/

357.Volpe, A., et al. The natural history of incidentally detected small renal masses. Cancer, 2004.
100: 738.

https://pubmed.ncbi.nlm.nih.gov/14770429/

358.Zini, L., et al. A population-based comparison of survival after nephrectomy vs nonsurgical management for small renal masses. BJU Int, 2009. 103: 899.

https://pubmed.ncbi.nlm.nih.gov/19154499/

359.Xing, M., et al. Comparative Effectiveness of Thermal Ablation, Surgical Resection, and Active Surveillance for T1a Renal Cell Carcinoma: A Surveillance, Epidemiology, and End Results (SEER)-Medicare-linked Population Study. Radiology, 2018. 288: 81.

https://pubmed.ncbi.nlm.nih.gov/29737950/

360.Sun, M., et al. Management of localized kidney cancer: calculating cancer-specific mortality and competing risks of death for surgery and nonsurgical management. Eur Urol, 2014. 65: 235.

https://pubmed.ncbi.nlm.nih.gov//23567066”

361.Huang WC, et al. Surveillance for the management of small renal masses: outcomes in a population-based cohort. J Urol, 2013: e483.

https://ascopubs.org/doi/abs/10.1200/jco.2013.31.6_suppl.343

362.Hyams ES, et al. Partial nephrectomy vs. Non-surgical management for small renal massess: a population-based comparison of disease-specific and overall survival. J Urol, 2012. 187: E678.

https://www.auajournals.org/doi/full/10.1016/j.juro.2012.02.1552

363.Jewett, M.A., et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur Urol, 2011. 60: 39.

https://pubmed.ncbi.nlm.nih.gov/21477920/

364.Smaldone, M.C., et al. Small renal masses progressing to metastases under active surveillance: a systematic review and pooled analysis. Cancer, 2012. 118: 997.

https://pubmed.ncbi.nlm.nih.gov/21766302/

365.Klatte, T., et al. Intermediate- and long-term oncological outcomes of active surveillance for localized renal masses: a systematic review and quantitative analysis. BJU Int, 2021. 128: 131.

https://pubmed.ncbi.nlm.nih.gov/34060192/

366.Finelli, A., et al. Small Renal Mass Surveillance: Histology-specific Growth Rates in a Biopsy-characterized Cohort. Eur Urol, 2020. 78: 460.

https://pubmed.ncbi.nlm.nih.gov/32680677/

367.Patel, N., et al. Active surveillance of small renal masses offers short-term oncological efficacy equivalent to radical and partial nephrectomy. BJU Int, 2012. 110: 1270.

https://pubmed.ncbi.nlm.nih.gov/22564495/

368.Pierorazio, P.M., et al. Five-year analysis of a multi-institutional prospective clinical trial of delayed intervention and surveillance for small renal masses: the DISSRM registry. Eur Urol, 2015. 68: 408.

https://pubmed.ncbi.nlm.nih.gov/25698065/

369.Uzosike, A.C., et al. Growth Kinetics of Small Renal Masses on Active Surveillance: Variability and Results from the DISSRM Registry. J Urol, 2018. 199: 641.

https://pubmed.ncbi.nlm.nih.gov/28951284/

370.Abou Youssif, T., et al. Active surveillance for selected patients with renal masses: updated results with long-term follow-up. Cancer, 2007. 110: 1010.

https://pubmed.ncbi.nlm.nih.gov/17628489/

371.Abouassaly, R., et al. Active surveillance of renal masses in elderly patients. J Urol, 2008. 180: 505.

https://pubmed.ncbi.nlm.nih.gov/18550113/

372.Crispen, P.L., et al. Natural history, growth kinetics, and outcomes of untreated clinically localized renal tumors under active surveillance. Cancer, 2009. 115: 2844.

https://pubmed.ncbi.nlm.nih.gov/19402168/

373.Rosales, J.C., et al. Active surveillance for renal cortical neoplasms. J Urol, 2010. 183: 1698.

https://pubmed.ncbi.nlm.nih.gov/20299038/

374.Pierorazio P, et al. Quality of life on active surveillance for small masses versus immediate intervention: interim analysis of the DISSRM (delayed intervention and surveillance for small renal masses) registry. J Urol, 2013. 189: e259.

https://www.auajournals.org/doi/full/10.1016/j.juro.2013.02.185

375.Atwell, T.D., et al. Percutaneous ablation of renal masses measuring 3.0 cm and smaller: comparative local control and complications after radiofrequency ablation and cryoablation. AJR Am J Roentgenol, 2013. 200: 461.

https://pubmed.ncbi.nlm.nih.gov/23345372/

376.Widdershoven, C.V., et al. Renal biopsies performed before versus during ablation of T1 renal tumors: implications for prevention of overtreatment and follow-up. Abdom Radiol (NY), 2021. 46: 373.

https://pubmed.ncbi.nlm.nih.gov/32564209/

377.Chan, V.W., et al. The changing trends of image-guided biopsy of small renal masses before intervention-an analysis of European multinational prospective EuRECA registry. Eur Radiol, 2022. 32: 4667.

https://pubmed.ncbi.nlm.nih.gov/35122492/

378.Lay, A.H., et al. Oncologic Efficacy of Radio Frequency Ablation for Small Renal Masses: Clear Cell vs Papillary Subtype. J Urol, 2015. 194: 653.

https://pubmed.ncbi.nlm.nih.gov/25846416/

379.McClure, T., et al. Efficacy of percutaneous radiofrequency ablation may vary with clear cell renal cell cancer histologic subtype. Abdom Radiol (NY), 2018. 43: 1472.

https://pubmed.ncbi.nlm.nih.gov/28936542/

380.Liu, N., et al. Percutaneous radiofrequency ablation for renal cell carcinoma vs. partial nephrectomy: Comparison of long-term oncologic outcomes in both clear cell and non-clear cell of the most common subtype. Urol Oncol, 2017. 35: 530.e1.

https://pubmed.ncbi.nlm.nih.gov/28408296/

381.Breen, D.J., et al. Image-guided Cryoablation for Sporadic Renal Cell Carcinoma: Three- and 5-year Outcomes in 220 Patients with Biopsy-proven Renal Cell Carcinoma. Radiology, 2018. 289: 554.

https://pubmed.ncbi.nlm.nih.gov/30084744/

382.Sisul, D.M., et al. RENAL nephrometry score is associated with complications after renal cryoablation: a multicenter analysis. Urology, 2013. 81: 775.

https://pubmed.ncbi.nlm.nih.gov/23434099/

383.Kim, E.H., et al. Outcomes of laparoscopic and percutaneous cryoablation for renal masses. J Urol, 2013. 189: e492.

https://www.auajournals.org/doi/10.1016/j.juro.2013.02.2554

384.Goyal, J., et al. Single-center comparative oncologic outcomes of surgical and percutaneous cryoablation for treatment of renal tumors. J Endourol, 2012. 26: 1413.

https://pubmed.ncbi.nlm.nih.gov/22642574/

385.Jiang, K., et al. Laparoscopic cryoablation vs. percutaneous cryoablation for treatment of small renal masses: a systematic review and meta-analysis. Oncotarget, 2017. 8: 27635.

https://pubmed.ncbi.nlm.nih.gov/28199973/

386.Zargar, H., et al. Cryoablation for Small Renal Masses: Selection Criteria, Complications, and Functional and Oncologic Results. Eur Urol, 2016. 69: 116.

https://pubmed.ncbi.nlm.nih.gov/25819723/

387.Pickersgill, N.A., et al. Ten-Year Experience with Percutaneous Cryoablation of Renal Tumors: Tumor Size Predicts Disease Progression. J Endourol, 2020. 34: 1211.

https://pubmed.ncbi.nlm.nih.gov/32292059/

388.Morkos, J., et al. Percutaneous Cryoablation for Stage 1 Renal Cell Carcinoma: Outcomes from a 10-year Prospective Study and Comparison with Matched Cohorts from the National Cancer Database. Radiology, 2020. 296: 452.

https://pubmed.ncbi.nlm.nih.gov/32515677/

389.Hebbadj, S., et al. Safety Considerations and Local Tumor Control Following Percutaneous Image-Guided Cryoablation of T1b Renal Tumors. Cardiovasc Intervent Radiol, 2018. 41: 449.

https://pubmed.ncbi.nlm.nih.gov/29075877/

390.Grange, R., et al. Computed tomography-guided percutaneous cryoablation of T1b renal tumors: safety, functional and oncological outcomes. Int J Hyperthermia, 2019. 36: 1065.

https://pubmed.ncbi.nlm.nih.gov/31648584/

391.Pecoraro, A., et al. Cryoablation Predisposes to Higher Cancer Specific Mortality Relative to Partial Nephrectomy in Patients with Nonmetastatic pT1b Kidney Cancer. J Urol, 2019. 202: 1120.

https://pubmed.ncbi.nlm.nih.gov/31347950/

392.Andrews, J.R., et al. Oncologic Outcomes Following Partial Nephrectomy and Percutaneous Ablation for cT1 Renal Masses. Eur Urol, 2019. 76: 244.

https://pubmed.ncbi.nlm.nih.gov/31060824/

393.Sundelin, M.O., et al. Repeated Cryoablation as Treatment Modality after Failure of Primary Renal Cryoablation: A European Registry for Renal Cryoablation Multinational Analysis. Journal of Endourology, 2019. 33: 909.

https://pubmed.ncbi.nlm.nih.gov/31507206/

394.Lian, H., et al. Single-center comparison of complications in laparoscopic and percutaneous radiofrequency ablation with ultrasound guidance for renal tumors. Urology, 2012. 80: 119.

https://pubmed.ncbi.nlm.nih.gov/22633890/

395.Young, E.E., et al. Comparison of safety, renal function outcomes and efficacy of laparoscopic and percutaneous radio frequency ablation of renal masses. J Urol, 2012. 187: 1177.

https://pubmed.ncbi.nlm.nih.gov/22357170/

396.Kim, S.D., et al. Radiofrequency ablation of renal tumors: four-year follow-up results in 47 patients. Korean J Radiol, 2012. 13: 625.

https://pubmed.ncbi.nlm.nih.gov/22977331/

397.Trudeau, V., et al. Comparison of Postoperative Complications and Mortality Between Laparoscopic and Percutaneous Local Tumor Ablation for T1a Renal Cell Carcinoma: A Population-based Study. Urology, 2016. 89: 63.

https://pubmed.ncbi.nlm.nih.gov/26514977/

398.Psutka, S.P., et al. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur Urol, 2013. 63: 486.

https://pubmed.ncbi.nlm.nih.gov/22959191/

399.Johnson, B.A., et al. Ten-Year Outcomes of Renal Tumor Radio Frequency Ablation. J Urol, 2019. 201: 251.

https://pubmed.ncbi.nlm.nih.gov/30634350/

400.Chang, X., et al. Radio frequency ablation versus partial nephrectomy for clinical T1b renal cell carcinoma: long-term clinical and oncologic outcomes. J Urol, 2015. 193: 430.

https://pubmed.ncbi.nlm.nih.gov/25106899/

401.Abu-Ghanem, Y., et al. Limitations of Available Studies Prevent Reliable Comparison Between Tumour Ablation and Partial Nephrectomy for Patients with Localised Renal Masses: A Systematic Review from the European Association of Urology Renal Cell Cancer Guideline Panel. Eur Urol Oncol, 2020. 3: 433.

https://pubmed.ncbi.nlm.nih.gov/32245655/

402.Guazzoni, G., et al. Oncologic results of laparoscopic renal cryoablation for clinical T1a tumors:
8 years of experience in a single institution. Urology, 2010. 76: 624.

https://pubmed.ncbi.nlm.nih.gov/20579705/

403.Larcher, A., et al. Long-term oncologic outcomes of laparoscopic renal cryoablation as primary treatment for small renal masses. Urol Oncol, 2015. 33: 22.e1.

https://pubmed.ncbi.nlm.nih.gov/25301741/

404.Haber, G.P., et al. Tumour in solitary kidney: laparoscopic partial nephrectomy vs laparoscopic cryoablation. BJU Int, 2012. 109: 118.

https://pubmed.ncbi.nlm.nih.gov/21895929/

405.Turna, B., et al. Minimally invasive nephron sparing management for renal tumors in solitary kidneys. J Urol, 2009. 182: 2150.

https://pubmed.ncbi.nlm.nih.gov/19758655/

406.Siva, S., et al. Stereotactic ablative body radiotherapy for inoperable primary kidney cancer: a prospective clinical trial. BJU Int, 2017. 120: 623.

https://pubmed.ncbi.nlm.nih.gov/28188682/

407.Correa, R.J.M., et al. The Emerging Role of Stereotactic Ablative Radiotherapy for Primary Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Eur Urol Focus, 2019. 5: 958.

https://pubmed.ncbi.nlm.nih.gov/31248849/

408.Ali, M., et al. The Role of Stereotactic Ablative Body Radiotherapy in Renal Cell Carcinoma. Eur Urol, 2022. 82: 613.

https://pubmed.ncbi.nlm.nih.gov/35843777/

409.Yu, J., et al. Percutaneous Microwave Ablation versus Laparoscopic Partial Nephrectomy for cT1a Renal Cell Carcinoma: A Propensity-matched Cohort Study of 1955 Patients. Radiology, 2020.
294: 698.

https://pubmed.ncbi.nlm.nih.gov/31961239/

410.Shapiro, D.D., et al. Comparing Outcomes for Patients with Clinical T1b Renal Cell Carcinoma Treated With Either Percutaneous Microwave Ablation or Surgery. Urology, 2020. 135: 88.

https://pubmed.ncbi.nlm.nih.gov/31585198/

411.Zhou, W., et al. Radiofrequency Ablation, Cryoablation, and Microwave Ablation for T1a Renal Cell Carcinoma: A Comparative Evaluation of Therapeutic and Renal Function Outcomes. Journal of Vascular and Interventional Radiology, 2019. 30: 1035.

https://pubmed.ncbi.nlm.nih.gov/30956075/

412.Bhindi, B., et al. The role of lymph node dissection in the management of renal cell carcinoma: a systematic review and meta-analysis. BJU Int, 2018. 121: 684.

https://pubmed.ncbi.nlm.nih.gov/29319926/

413.Luo, X., et al. Influence of lymph node dissection in patients undergoing radical nephrectomy for non-metastatic renal cell carcinoma: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci, 2019. 23: 6079.

https://pubmed.ncbi.nlm.nih.gov/31364109/

414.Capitanio, U., et al. When to perform lymph node dissection in patients with renal cell carcinoma: a novel approach to the preoperative assessment of risk of lymph node invasion at surgery and of lymph node progression during follow-up. BJU Int, 2013. 112: E59.

https://pubmed.ncbi.nlm.nih.gov/23795799/

415.Tsui, K.H., et al. Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. J Urol, 2000. 163: 1090.

https://pubmed.ncbi.nlm.nih.gov/10737472/

416.Wagner, B., et al. Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur Urol, 2009. 55: 452.

https://pubmed.ncbi.nlm.nih.gov/18692951/

417.Klatte, T., et al. Prognostic factors for renal cell carcinoma with tumor thrombus extension. J Urol, 2007. 178: 1189.

https://pubmed.ncbi.nlm.nih.gov/17698087/

418.Lardas, M., et al. Systematic Review of Surgical Management of Nonmetastatic Renal Cell Carcinoma with Vena Caval Thrombus. Eur Urol, 2016. 70: 265.

https://pubmed.ncbi.nlm.nih.gov/26707869/

419.Garg, H., et al. A Decade of Robotic-Assisted Radical Nephrectomy with Inferior Vena Cava Thrombectomy: A Systematic Review and Meta-Analysis of Perioperative Outcomes. J Urol, 2022. 208: 542.

https://pubmed.ncbi.nlm.nih.gov/35762219/

420.Stewart, G.D., et al. A Phase II study of neoadjuvant axitinib for reducing the extent of venous tumour thrombus in clear cell renal cell cancer with venous invasion (NAXIVA). Br J Cancer, 2022. 127: 1051.

https://pubmed.ncbi.nlm.nih.gov/35739300/

421.Ljungberg, B., et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2022 Update. Eur Urol, 2022. 82: 399.

https://pubmed.ncbi.nlm.nih.gov/35346519/

422.Hallscheidt, P., et al. [Preoperative and palliative embolization of renal cell carcinomas: follow-up of 49 patients]. Rofo, 2006. 178: 391.

https://pubmed.ncbi.nlm.nih.gov/16612730/

423.Wright, B., et al. Trans-arterial embolization of renal cell carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY), 2022. 47: 2238.

https://pubmed.ncbi.nlm.nih.gov/35380246/

424.Rodríguez-Fernández, I.A., et al. Adjuvant Radiation Therapy After Radical Nephrectomy in Patients with Localized Renal Cell Carcinoma: A Systematic Review and Meta-analysis. Eur Urol Oncol, 2019. 2: 448.

https://pubmed.ncbi.nlm.nih.gov/31277782/

425.Galligioni, E., et al. Adjuvant immunotherapy treatment of renal carcinoma patients with autologous tumor cells and bacillus Calmette-Guerin: five-year results of a prospective randomized study. Cancer, 1996. 77: 2560.

https://pubmed.ncbi.nlm.nih.gov/8640706/

426.Figlin, R.A., et al. Multicenter, randomized, phase III trial of CD8(+) tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J Clin Oncol, 1999. 17: 2521.

https://pubmed.ncbi.nlm.nih.gov/10561318/

427.Clark, J.I., et al. Adjuvant high-dose bolus interleukin-2 for patients with high-risk renal cell carcinoma: a cytokine working group randomized trial. J Clin Oncol, 2003. 21: 3133.

https://pubmed.ncbi.nlm.nih.gov/12810695/

428.Atzpodien, J., et al. Adjuvant treatment with interleukin-2- and interferon-alpha2a-based chemoimmunotherapy in renal cell carcinoma post tumour nephrectomy: results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). Br J Cancer, 2005. 92: 843.

https://pubmed.ncbi.nlm.nih.gov/15756254/

429.Jocham, D., et al. Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet, 2004. 363: 594.

https://pubmed.ncbi.nlm.nih.gov/14987883/

430.Chamie, K., et al. Adjuvant Weekly Girentuximab Following Nephrectomy for High-Risk Renal Cell Carcinoma: The ARISER Randomized Clinical Trial. JAMA Oncol, 2017. 3: 913.

https://pubmed.ncbi.nlm.nih.gov/27787547/

431.Haas, N.B., et al. Adjuvant Treatment for High-Risk Clear Cell Renal Cancer: Updated Results of a High-Risk Subset of the ASSURE Randomized Trial. JAMA Oncol, 2017. 3: 1249.

https://pubmed.ncbi.nlm.nih.gov/28278333/

432.Haas, N.B., et al. Initial results from ASSURE (E2805): Adjuvant sorafenib or sunitinib for unfavorable renal carcinoma, an ECOG-ACRIN-led, NCTN phase III trial. ASCO Meeting Abstracts, 2015. 33: 403.

https://ascopubs.org/doi/abs/10.1200/jco.2015.33.7_suppl.403

433.Motzer, R.J., et al. Randomized Phase III Trial of Adjuvant Pazopanib Versus Placebo After Nephrectomy in Patients With Localized or Locally Advanced Renal Cell Carcinoma. J Clin Oncol, 2017. 35: 3916.

https://pubmed.ncbi.nlm.nih.gov/28902533/

434.Motzer, R.J., et al. Adjuvant Pazopanib Versus Placebo After Nephrectomy in Patients With Localized or Locally Advanced Renal Cell Carcinoma: Final Overall Survival Analysis of the Phase 3 PROTECT Trial. Eur Urol, 2021. 79: 334.

https://pubmed.ncbi.nlm.nih.gov/33461782/

435.Harshman, L.C., et al. Meta-analysis of disease free survival (DFS) as a surrogate for overall survival (OS) in localized renal cell carcinoma (RCC). J Clin Oncol, 2017. 35: 459.

https://pubmed.ncbi.nlm.nih.gov/29266178/

436.Lenis, A.T., et al. Adjuvant Therapy for High Risk Localized Kidney Cancer: Emerging Evidence and Future Clinical Trials. J Urol, 2018. 199: 43.

https://pubmed.ncbi.nlm.nih.gov/28479237/

437.Gross-Goupil, M., et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: results from the phase III, randomized ATLAS trial. Ann Oncol, 2018. 29: 2371.

https://pubmed.ncbi.nlm.nih.gov/30346481/

438.Motzer, R.J., et al. Adjuvant Sunitinib for High-risk Renal Cell Carcinoma After Nephrectomy: Subgroup Analyses and Updated Overall Survival Results. Eur Urol, 2018. 73: 62.

https://pubmed.ncbi.nlm.nih.gov/28967554/

439.Ryan, C.W., et al. EVEREST: Everolimus for renal cancer ensuing surgical therapy—A phase III study (SWOG S0931, NCT01120249). J Clin Oncol, 2022. 40: LBA4500.

https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.17_suppl.LBA4500

440.Powles, T., et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2022. 23: 1133.

https://pubmed.ncbi.nlm.nih.gov/36055304/

441.Choueiri, T.K., et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N Engl
J Med, 2021. 385: 683.

https://pubmed.ncbi.nlm.nih.gov/34407342/

442.Pal, S.K., et al. Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at increased risk of recurrence following resection (IMmotion010): a multicentre, randomised, double-blind, phase 3 trial. Lancet, 2022. 400: 1103.

https://pubmed.ncbi.nlm.nih.gov/36099926/

443.Motzer, R.J., et al. Adjuvant nivolumab plus ipilimumab (NIVO+IPI) vs placebo (PBO) for localized renal cell carcinoma (RCC) at high risk of relapse after nephrectomy: Results from the randomized, phase III CheckMate 914 trial. Ann Oncol, 2022. 33 Suppl 7: S808.

https://kidney.uroonco.uroweb.org/publication/adjuvant-nivolumab-plus-ipilimumab-nivoipi-vs-placebo-pbo-for-localized-renal-cell-carcinoma-rcc-at-high-risk-of-relapse-after-nephrectomy-
results-from-the-randomized-phase-iii-checkmate-914/

444.Allaf, M., et al. Phase III randomized study comparing perioperative nivolumab (nivo) versus observation in patients (Pts) with renal cell carcinoma (RCC) undergoing nephrectomy (PROSPER, ECOG-ACRIN EA8143), a National Clinical Trials Network trial. Ann Oncol, 2022. 33 Suppl 7: S808.

https://oncologypro.esmo.org/meeting-resources/esmo-congress/phase-iii-randomized-study-comparing-perioperative-nivolumab-nivo-versus-observation-in-patients-pts-with-renal-cell-carcinoma-rcc-undergoing

445.Bedke, J., et al. 2021 Updated European Association of Urology Guidelines on the Use of Adjuvant Pembrolizumab for Renal Cell Carcinoma. Eur Urol, 2022. 81: 134.

https://pubmed.ncbi.nlm.nih.gov/34920897/

446.Bedke, J., et al. The 2022 Updated European Association of Urology Guidelines on the Use of Adjuvant Immune Checkpoint Inhibitor Therapy for Renal Cell Carcinoma. Eur Urol, 2023. 83: 10.

https://pubmed.ncbi.nlm.nih.gov/36511268/

447.Flanigan, R.C., et al. Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J Urol, 2004. 171: 1071.

https://pubmed.ncbi.nlm.nih.gov/14767273/

448.Mejean, A., et al. Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma. N Engl
J Med, 2018. 379: 417.

https://pubmed.ncbi.nlm.nih.gov/29860937/

449.Bex, A., et al. Comparison of Immediate vs Deferred Cytoreductive Nephrectomy in Patients With Synchronous Metastatic Renal Cell Carcinoma Receiving Sunitinib: The SURTIME Randomized Clinical Trial. JAMA Oncol, 2019. 5: 164.

https://pubmed.ncbi.nlm.nih.gov/30543350/

450.Bhindi, B., et al. Systematic Review of the Role of Cytoreductive Nephrectomy in the Targeted Therapy Era and Beyond: An Individualized Approach to Metastatic Renal Cell Carcinoma. Eur Urol, 2019. 75: 111.

https://pubmed.ncbi.nlm.nih.gov/30467042/

451.Powles, T., et al. The outcome of patients treated with sunitinib prior to planned nephrectomy in metastatic clear cell renal cancer. Eur Urol, 2011. 60: 448.

https://pubmed.ncbi.nlm.nih.gov/21612860/

452.Heng, D.Y., et al. Cytoreductive nephrectomy in patients with synchronous metastases from renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur Urol, 2014. 66: 704.

https://pubmed.ncbi.nlm.nih.gov/24931622/

453.de Bruijn, R., et al. Deferred Cytoreductive Nephrectomy Following Presurgical Vascular Endothelial Growth Factor Receptor-targeted Therapy in Patients with Primary Metastatic Clear Cell Renal Cell Carcinoma: A Pooled Analysis of Prospective Trial Data. Eur Urol Oncol, 2020. 3: 168.

https://pubmed.ncbi.nlm.nih.gov/31956080/

454.Ljungberg, B., et al. Survival advantage of upfront cytoreductive nephrectomy in patients with primary metastatic renal cell carcinoma compared with systemic and palliative treatments in a real-world setting. Scand J Urol, 2020. 54: 487.

https://pubmed.ncbi.nlm.nih.gov/32897123/

455.Motzer, R.J., et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N Engl J Med, 2018. 378: 1277.

https://pubmed.ncbi.nlm.nih.gov/29562145/

456.Choueiri, T.K., et al. 696O_PR - Nivolumab + cabozantinib vs sunitinib in first-line treatment for advanced renal cell carcinoma: First results from the randomized phase III CheckMate 9ER trial. Ann Oncol 2020. 31: S1159.

https://www.annalsofoncology.org/article/S0923-7534(20)42339-7/fulltext

457.Motzer, R.J., et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma.
N Engl J Med, 2019. 380: 1103.

https://pubmed.ncbi.nlm.nih.gov/30779531/

458.Soulières, D., et al. Pembrolizumab Plus Axitinib Versus Sunitinib as First-Line Therapy for Advanced Renal Cell Carcinoma (RCC): Subgroup Analysis From KEYNOTE-426 by Prior Nephrectomy 19th annual meeting of the International Kidney Cancer Symposium, 2020. A Virtual Experience. Access date January 2023.

https://www.urotoday.com/conference-highlights/asco-2021/asco-2021-kidney-cancer/130133

459.Motzer, R.J., et al. Phase 3 trial of lenvatinib (LEN) plus pembrolizumab (PEMBRO) or everolimus (EVE) versus sunitinib (SUN) monotherapy as a first-line treatment for patients (pts) with advanced renal cell carcinoma (RCC) (CLEAR study). J Clin Oncol, 2021. 39: 269.

https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.6_suppl.269

460.Dabestani, S., et al. Local treatments for metastases of renal cell carcinoma: a systematic review. Lancet Oncol, 2014. 15: e549.

https://pubmed.ncbi.nlm.nih.gov/25439697/

461.Dabestani, S., et al. EAU Renal Cell Carcinoma Guideline Panel. Systematic review methodology for the EAU RCC Guideline 2013.

462.Brinkmann, O.A., et al. The Role of Residual Tumor Resection in Patients with Metastatic Renal Cell Carcinoma and Partial Remission following Immunochemotherapy. Eur Urol Suppl, 2007. 6: 641.

https://www.sciencedirect.com/science/article/abs/pii/S1569905607000978

463.Alt, A.L., et al. Survival after complete surgical resection of multiple metastases from renal cell carcinoma. Cancer, 2011. 117: 2873.

https://pubmed.ncbi.nlm.nih.gov/21692048/

464.Kwak, C., et al. Metastasectomy without systemic therapy in metastatic renal cell carcinoma: comparison with conservative treatment. Urol Int, 2007. 79: 145.

https://pubmed.ncbi.nlm.nih.gov/17851285/

465.Petralia, G., et al. 450 Complete metastasectomy is an independent predictor of cancer-specific survival in patients with clinically metastatic renal cell carcinoma. Eur Urol Suppl, 2010. 9: 162.

https://www.eusupplements.europeanurology.com/article/S1569-9056(10)60446-0/abstract

466.Russo, P., et al. Cytoreductive nephrectomy and nephrectomy/complete metastasectomy for metastatic renal cancer. Scientific World J, 2007. 7: 768.

https://pubmed.ncbi.nlm.nih.gov/17619759/

467.Staehler, M.D., et al. Metastasectomy significantly prolongs survival in patients with metastatic renal cell cancer. J. Urol, 2009. 181: 498.

https://www.auajournals.org/article/S0022-5347(09)61409-9/pdf

468.Eggener, S.E., et al. Risk score and metastasectomy independently impact prognosis of patients with recurrent renal cell carcinoma. J Urol, 2008. 180: 873.

https://pubmed.ncbi.nlm.nih.gov/18635225/

469.Lee, S.E., et al. Metastatectomy prior to immunochemotherapy for metastatic renal cell carcinoma. Urol Int, 2006. 76: 256.

https://pubmed.ncbi.nlm.nih.gov/16601390/

470.Fuchs, B., et al. Solitary bony metastasis from renal cell carcinoma: significance of surgical treatment. Clin Orthop Relat Res, 2005: 187.

https://pubmed.ncbi.nlm.nih.gov/15685074/

471.Hunter, G.K., et al. The efficacy of external beam radiotherapy and stereotactic body radiotherapy for painful spinal metastases from renal cell carcinoma. Pract Radiat Oncol, 2012. 2: e95.

https://pubmed.ncbi.nlm.nih.gov/24674192/

472.Zelefsky, M.J., et al. Tumor control outcomes after hypofractionated and single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases from renal cell carcinoma. Int J Radiat Oncol Biol Phys, 2012. 82: 1744.

https://pubmed.ncbi.nlm.nih.gov/21596489/

473.Fokas, E., et al. Radiotherapy for brain metastases from renal cell cancer: should whole-brain radiotherapy be added to stereotactic radiosurgery?: analysis of 88 patients. Strahlenther Onkol, 2010. 186: 210.

https://pubmed.ncbi.nlm.nih.gov/20165820/

474.Ikushima, H., et al. Fractionated stereotactic radiotherapy of brain metastases from renal cell carcinoma. Int J Radiat Oncol Biol Phys, 2000. 48: 1389.

https://pubmed.ncbi.nlm.nih.gov/11121638/

475.Staehler, M.D., et al. Liver resection for metastatic disease prolongs survival in renal cell carcinoma: 12-year results from a retrospective comparative analysis. World J Urol, 2010. 28: 543.

https://pubmed.ncbi.nlm.nih.gov/20440505/

476.Amiraliev, A. Treatment strategy in patients with pulmonary metastases of renal cell cancer. Int Cardiovasc Thor Surg, 2012. S20.

https://www.researchgate.net/publication/284295837

477.Zerbi, A., et al. Pancreatic metastasis from renal cell carcinoma: which patients benefit from surgical resection? Ann Surg Oncol, 2008. 15: 1161.

https://pubmed.ncbi.nlm.nih.gov/18196343/

478.Chanez, B., et al. Endoscopic Ultrasound-Guided Radiofrequency Ablation as an Future Alternative to Pancreatectomy for Pancreatic Metastases from Renal Cell Carcinoma: A Prospective Study. Cancers (Basel), 2021. 13: 5267.

https://pubmed.ncbi.nlm.nih.gov/34771431/

479.Kroeze, S.G.C., et al. Stereotactic radiotherapy combined with immunotherapy or targeted therapy for metastatic renal cell carcinoma. BJU Int, 2021. 127: 703.

https://pubmed.ncbi.nlm.nih.gov/33113260/

480.Franzese, C., et al. The role of stereotactic body radiation therapy and its integration with systemic therapies in metastatic kidney cancer: a multicenter study on behalf of the AIRO (Italian Association of Radiotherapy and Clinical Oncology) genitourinary study group. Clin Exp Metastasis, 2021. 38: 527.

https://pubmed.ncbi.nlm.nih.gov/34748125/

481.Cheung, P., et al. Stereotactic Radiotherapy for Oligoprogression in Metastatic Renal Cell Cancer Patients Receiving Tyrosine Kinase Inhibitor Therapy: A Phase 2 Prospective Multicenter Study. Eur Urol, 2021. 80: 693.

https://pubmed.ncbi.nlm.nih.gov/34399998/

482.Heng, D.Y., et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol, 2009. 27: 5794.

https://pubmed.ncbi.nlm.nih.gov/19826129/

483.Bedke, J., et al. The 2021 Updated European Association of Urology Guidelines on Renal Cell Carcinoma: Immune Checkpoint Inhibitor-based Combination Therapies for Treatment-naive Metastatic Clear-cell Renal Cell Carcinoma Are Standard of Care. Eur Urol, 2021. 80: 393.

https://pubmed.ncbi.nlm.nih.gov/34074559/

484.Harrison, M.R., et al. Active surveillance of metastatic renal cell carcinoma: Results from a prospective observational study (MaRCC). Cancer, 2021. 127: 2204.

https://pubmed.ncbi.nlm.nih.gov/33765337/

485.Rini, B.I., et al. Active surveillance in metastatic renal-cell carcinoma: a prospective, phase 2 trial. Lancet Oncol, 2016. 17: 1317.

https://pubmed.ncbi.nlm.nih.gov/27498080/

486.Patel, P.H., et al. Targeting von Hippel-Lindau pathway in renal cell carcinoma. Clin Cancer Res, 2006. 12: 7215.

https://pubmed.ncbi.nlm.nih.gov/17189392/

487.Yang, J.C., et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med, 2003. 349: 427.

https://pubmed.ncbi.nlm.nih.gov/12890841/

488.Patard, J.J., et al. Understanding the importance of smart drugs in renal cell carcinoma. Eur Urol, 2006. 49: 633.

https://pubmed.ncbi.nlm.nih.gov/16481093/

489.Motzer, R.J., et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol, 2009. 27: 3584.

https://pubmed.ncbi.nlm.nih.gov/19487381/

490.Motzer, R.J., et al. Randomized phase II trial of sunitinib on an intermittent versus continuous dosing schedule as first-line therapy for advanced renal cell carcinoma. J Clin Oncol, 2012. 30: 1371.

https://pubmed.ncbi.nlm.nih.gov/22430274/

491.Bracarda, S., et al. Sunitinib administered on 2/1 schedule in patients with metastatic renal cell carcinoma: the RAINBOW analysis. Ann Oncol, 2016. 27: 366.

https://pubmed.ncbi.nlm.nih.gov/26685011/

492.Jonasch, E., et al. A randomized phase 2 study of MK-2206 versus everolimus in refractory renal cell carcinoma. Ann Oncol, 2017. 28: 804.

https://pubmed.ncbi.nlm.nih.gov/28049139/

493.Sternberg, C.N., et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol, 2010. 28: 1061.

https://pubmed.ncbi.nlm.nih.gov/20100962/

494.Motzer, R.J., et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med, 2013. 369: 722.

https://pubmed.ncbi.nlm.nih.gov/23964934/

495.Escudier, B., et al. Randomized, controlled, double-blind, cross-over trial assessing treatment preference for pazopanib versus sunitinib in patients with metastatic renal cell carcinoma: PISCES Study. J Clin Oncol, 2014. 32: 1412.

https://pubmed.ncbi.nlm.nih.gov/24687826/

496.Rini, B.I., et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet, 2011. 378: 1931.

https://pubmed.ncbi.nlm.nih.gov/22056247/

497.Motzer, R.J., et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol, 2013. 14: 552.

https://pubmed.ncbi.nlm.nih.gov/23598172/

498.Hutson, T.E., et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. Lancet Oncol, 2013. 14: 1287.

https://pubmed.ncbi.nlm.nih.gov/24206640/

499.Choueiri, T.K., et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl
J Med, 2015. 373: 1814.

https://pubmed.ncbi.nlm.nih.gov/26406150/

500.Choueiri, T.K., et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol, 2016. 17: 917.

https://pubmed.ncbi.nlm.nih.gov/27279544/

501.Choueiri, T.K., et al. Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial. J Clin Oncol, 2017. 35: 591.

https://pubmed.ncbi.nlm.nih.gov/28199818/

502.Choueiri, T.K., et al. Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): Progression-free survival by independent review and overall survival update. Eur J Cancer, 2018. 94: 115.

https://pubmed.ncbi.nlm.nih.gov/29550566/

503.Motzer, R.J., et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol, 2015. 16: 1473.

https://pubmed.ncbi.nlm.nih.gov/26482279/

504.Motzer, R.J., et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. J Clin Oncol, 2013. 31: 3791.

https://pubmed.ncbi.nlm.nih.gov/24019545/

505.Molina, A.M., et al. Efficacy of tivozanib treatment after sorafenib in patients with advanced renal cell carcinoma: crossover of a phase 3 study. Eur J Cancer, 2018. 94: 87.

https://pubmed.ncbi.nlm.nih.gov/29547835/

506.Escudier B., et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol, 2010. 28: 2144.

https://pubmed.ncbi.nlm.nih.gov/20368553/

507.Rini, B.I., et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol, 2008. 26: 5422.

https://pubmed.ncbi.nlm.nih.gov/18936475/

508.Rini, B.I., et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol, 2010. 28: 2137.

https://pubmed.ncbi.nlm.nih.gov/20368558/

509.Rini, B.I., et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet, 2019. 393: 2404.

https://pubmed.ncbi.nlm.nih.gov/31079938/

510.Larkin, J.M., et al. Kinase inhibitors in the treatment of renal cell carcinoma. Crit Rev Oncol Hematol, 2006. 60: 216.

https://pubmed.ncbi.nlm.nih.gov/16860997/

511.Motzer, R.J., et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet, 2008. 372: 449.

https://pubmed.ncbi.nlm.nih.gov/18653228/

512.Ribas, A. Tumor immunotherapy directed at PD-1. N Engl J Med, 2012. 366: 2517.

https://pubmed.ncbi.nlm.nih.gov/22658126/

513.Motzer, R.J., et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med, 2015. 373: 1803.

https://pubmed.ncbi.nlm.nih.gov/26406148/

514.Motzer, R.J., et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer, 2020.

https://pubmed.ncbi.nlm.nih.gov/32673417/

515.McDermott, D.F., et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med, 2018. 24: 749.

https://pubmed.ncbi.nlm.nih.gov/29867230/

516.McDermott, D.F., et al. Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma (accRCC): Results from cohort A of KEYNOTE-427. J Clin Oncol, 2018. 36.

https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.4500

517.Atkins, M.B., et al. Phase II Study of Nivolumab and Salvage Nivolumab/Ipilimumab in Treatment-Naive Patients With Advanced Clear Cell Renal Cell Carcinoma (HCRN GU16-260-Cohort A). J Clin Oncol, 2022. 40: 2913.

https://pubmed.ncbi.nlm.nih.gov/35442713/

518.Choueiri, T.K., et al. FRACTION-RCC: nivolumab plus ipilimumab for advanced renal cell carcinoma after progression on immuno-oncology therapy. J Immunother Cancer, 2022. 10.

https://pubmed.ncbi.nlm.nih.gov/36328377/

519.Ljungberg, B., et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur Urol, 2019. 75: 799.

https://pubmed.ncbi.nlm.nih.gov/30803729/

520.Motzer, R.J., et al. 661P Conditional survival and 5-year follow-up in CheckMate 214: First-line nivolumab + ipilimumab (N+I) versus sunitinib (S) in advanced renal cell carcinoma (aRCC). Ann Oncol, 2021. 32: S685.

https://www.annalsofoncology.org/article/S0923-7534(21)02271-7/fulltext

521.Choueiri, T., et al. LBA8 - Phase III study of cabozantinib (C) in combination with nivolumab (N) and ipilimumab (I) in previously untreated advanced renal cell carcinoma (aRCC) of IMDC intermediate or poor risk (COSMIC-313). Ann Oncol, 2022. 33 Suppl. 7.

https://oncologypro.esmo.org/meeting-resources/esmo-congress/phase-iii-study-of-cabozantinib-c-in-combination-with-nivolumab-n-and-ipilimumab-i-in-previously-untreated-advanced-renal-cell-carcinoma-arc

522.Motzer R.J., et al. Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma. Cancer. 2022. 128: 2085.

https://pubmed.ncbi.nlm.nih.gov/35383908/

523.Rini, B.I., et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma.
N Engl J Med, 2019. 380: 1116.

https://pubmed.ncbi.nlm.nih.gov/30779529/

524.Rini, B.I., et al. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for advanced clear cell renal cell carcinoma (ccRCC): Results from 42-month follow-up of KEYNOTE-426. J Clin Oncol, 2021. 39: 4500.

https://www.urotoday.com/conference-highlights/asco-2021/asco-2021-kidney-cancer/130182

525.Choueiri, T.K., et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med, 2021. 384: 829.

https://pubmed.ncbi.nlm.nih.gov/33657295/

526.Motzer, R.J., et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol, 2022. 23: 888.

https://pubmed.ncbi.nlm.nih.gov/35688173/

527.Motzer, R., et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N Engl J Med, 2021.

https://pubmed.ncbi.nlm.nih.gov/33616314/

528.Choueiri, T.K., et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann Oncol, 2020.
31: 1030.

https://pubmed.ncbi.nlm.nih.gov/32339648/

529.Motzer, R.J., et al. Final Overall Survival and Molecular Analysis in IMmotion151, a Phase 3 Trial Comparing Atezolizumab Plus Bevacizumab vs Sunitinib in Patients With Previously Untreated Metastatic Renal Cell Carcinoma. JAMA Oncol, 2022. 8: 275.

https://pubmed.ncbi.nlm.nih.gov/34940781/

530.Powles, T., et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol, 2020. 21: 1563.

https://pubmed.ncbi.nlm.nih.gov/33284113/

531.Choueiri T, et al., A phase 3 trial of lenvatinib plus pembrolizumab versus sunitinib as a first-line treatment for patients with advanced renal cell carcinoma:overall survival follow-up analysis (the CLEAR study), in Kidney Cancer Research Summit. 2021: Philadelphia, USA.

532.Tannir, N.M., et al. Thirty-month follow-up of the phase III CheckMate 214 trial of first-line nivolumab + ipilimumab (N+I) or sunitinib (S) in patients (pts) with advanced renal cell carcinoma (aRCC). J Clin Oncol, 2019. 37: 547.

https://ascopubs.org/doi/10.1200/JCO.2019.37.7_suppl.547

533.Motzer R.J., et al. Nivolumab + Ipilimumab (N+I) vs Sunitinib (S) for treatment-naïve advanced or metastatic renal cell carcinoma (aRCC): results from CheckMate 214, including overall survival by subgroups J Immunother Cancer, 2017. 5: 3.

https://link.springer.com/article/10.1186/s40425-017-0297-3

534.Auvray, M., et al. Second-line targeted therapies after nivolumab-ipilimumab failure in metastatic renal cell carcinoma. Eur J Cancer, 2019. 108: 33.

https://pubmed.ncbi.nlm.nih.gov/30616146/

535.Ornstein, M.C., et al. Prospective phase II multi-center study of individualized axitinib (Axi) titration for metastatic renal cell carcinoma (mRCC) after treatment with PD-1 / PD-L1 inhibitors. J Clin Oncol, 2018. 36.

https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.4517

536.Pal, S.K., et al. Assessing the Safety and Efficacy of Two Starting Doses of Lenvatinib Plus Everolimus in Patients with Renal Cell Carcinoma: A Randomized Phase 2 Trial. Eur Urol, 2022. 82: 283.

https://pubmed.ncbi.nlm.nih.gov/35210132/

537.Lee, C.H., et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): a phase 1b/2 study. Lancet Oncol, 2021. 22: 946.

https://pubmed.ncbi.nlm.nih.gov/34143969/

538.Coppin, C., et al. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int, 2011. 108: 1556.

https://pubmed.ncbi.nlm.nih.gov/21952069/

539.Rini, B.I., et al. Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): a phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol, 2020. 21: 95.

https://pubmed.ncbi.nlm.nih.gov/31810797/

540.Rini, B.I., et al. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for metastatic renal cell carcinoma (mRCC): Outcomes in the combined IMDC intermediate/poor risk and sarcomatoid subgroups of the phase 3 KEYNOTE-426 study. J Clin Oncol, 2019. 37: 4500.

https://ascopubs.org/doi/10.1200/JCO.2019.37.15_suppl.4500

541.Choueiri, T.K., et al. Efficacy and biomarker analysis of patients (pts) with advanced renal cell carcinoma (aRCC) with sarcomatoid histology (sRCC): Subgroup analysis from the phase III JAVELIN renal 101 trial of first-line avelumab plus axitinib (A + Ax) vs sunitinib (S). Ann Oncol, 2019. 30: v361.

https://www.annalsofoncology.org/article/S0923-7534(19)59126-8/fulltext

542.Choueiri, T.K., et al. Efficacy and correlative analyses of avelumab plus axitinib versus sunitinib in sarcomatoid renal cell carcinoma: post hoc analysis of a randomized clinical trial. ESMO Open, 2021. 6: 100101.

https://pubmed.ncbi.nlm.nih.gov/33901870/

543.Rini, B.I., et al. Atezolizumab plus Bevacizumab Versus Sunitinib for Patients with Untreated Metastatic Renal Cell Carcinoma and Sarcomatoid Features: A Prespecified Subgroup Analysis of the IMmotion151 Clinical Trial. Eur Urol, 2021. 79: 659.

https://pubmed.ncbi.nlm.nih.gov/32654802/

544.McDermott, D.F., et al. CheckMate 214 post-hoc analyses of nivolumab plus ipilimumab or sunitinib in IMDC intermediate/poor-risk patients with previously untreated advanced renal cell carcinoma with sarcomatoid features. J Clin Oncol, 2019. 37: 4513.

https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.4513

545.Motzer, R.J., et al. Nivolumab + cabozantinib (NIVO+CABO) versus sunitinib (SUN) for advanced renal cell carcinoma (aRCC): Outcomes by sarcomatoid histology and updated trial results with extended follow-up of CheckMate 9ER. J Clin Oncol, 2021. 39: 308.

https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.6_suppl.308

546.Choueiri, T., et al. 660P Phase III CLEAR trial in advanced renal cell carcinoma (aRCC): Outcomes in subgroups and toxicity update. Ann Oncol, 2021. 32: S683.

https://oncologypro.esmo.org/meeting-resources/esmo-congress/phase-iii-clear-trial-in-advanced-renal-cell-carcinoma-arcc-outcomes-in-subgroups-and-toxicity-update

547.Hudes, G., et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl
J Med, 2007. 356: 2271.

https://pubmed.ncbi.nlm.nih.gov/17538086/

548.Gore, M.E., et al. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol, 2009. 10: 757.

https://pubmed.ncbi.nlm.nih.gov/19615940/

549.Sánchez P, et al. Non-clear cell advanced kidney cancer: is there a gold standard? Anticancer Drugs 2011. 22 S9.

https://pubmed.ncbi.nlm.nih.gov/21173605/

550.Koh, Y., et al. Phase II trial of everolimus for the treatment of nonclear-cell renal cell carcinoma. Ann Oncol, 2013. 24: 1026.

https://pubmed.ncbi.nlm.nih.gov/23180114/

551.Fernández-Pello, S., et al. A Systematic Review and Meta-analysis Comparing the Effectiveness and Adverse Effects of Different Systemic Treatments for Non-clear Cell Renal Cell Carcinoma. Eur Urol, 2017. 71: 426.

https://pubmed.ncbi.nlm.nih.gov/27939075/

552.Tannir, N.M., et al. A phase 2 trial of sunitinib in patients with advanced non-clear cell renal cell carcinoma. Eur Urol, 2012. 62: 1013.

https://pubmed.ncbi.nlm.nih.gov/22771265/

553.Ravaud A, et al. First-line sunitinib in type I and II papillary renal cell carcinoma (PRCC): SUPAP, a phase II study of the French Genito-Urinary Group (GETUG) and the Group of Early Phase trials (GEP) J. Clin Oncol, 2009. Vol 27, No 15S: 5146.

https://ascopubs.org/doi/abs/10.1200/jco.2009.27.15_suppl.5146

554.Escudier, B., et al. Open-label phase 2 trial of first-line everolimus monotherapy in patients with papillary metastatic renal cell carcinoma: RAPTOR final analysis. Eur J Cancer, 2016. 69: 226.

https://pubmed.ncbi.nlm.nih.gov/27680407/

555.Pal, S.K., et al. A comparison of sunitinib with cabozantinib, crizotinib, and savolitinib for treatment of advanced papillary renal cell carcinoma: a randomised, open-label, phase 2 trial. Lancet, 2021. 397: 695.

https://pubmed.ncbi.nlm.nih.gov/33592176/

556.Choueiri, T.K., et al. Efficacy of Savolitinib vs Sunitinib in Patients With MET-Driven Papillary Renal Cell Carcinoma: The SAVOIR Phase 3 Randomized Clinical Trial. JAMA Oncol, 2020. 6: 1247.

https://pubmed.ncbi.nlm.nih.gov/32469384/

557.Albiges, L., et al. 1448O Phase II KEYNOTE-B61 study of pembrolizumab (Pembro) + lenvatinib (Lenva) as first-line treatment for non-clear cell renal cell carcinoma (nccRCC). Ann Oncol, 2022.
33: S1204.

https://oncologypro.esmo.org/meeting-resources/esmo-congress/phase-ii-keynote-b61-study-of-pembrolizumab-pembro-lenvatinib-lenva-as-first-line-treatment-for-non-clear-cell-renal-cell-carcinoma-nccrcc

558.Lee, C.H., et al. Phase II Trial of Cabozantinib Plus Nivolumab in Patients With Non-Clear-Cell Renal Cell Carcinoma and Genomic Correlates. J Clin Oncol, 2022. 40: 2333.

https://pubmed.ncbi.nlm.nih.gov/35298296/

559.McDermott, D.F., et al. Open-Label, Single-Arm, Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients With Advanced Non-Clear Cell Renal Cell Carcinoma. J Clin Oncol, 2021. 39: 1029.

https://pubmed.ncbi.nlm.nih.gov/33529058/

560.Msaouel, P., et al. Updated Recommendations on the Diagnosis, Management, and Clinical Trial Eligibility Criteria for Patients With Renal Medullary Carcinoma. Clin Genitourin Cancer, 2019. 17: 1.

https://pubmed.ncbi.nlm.nih.gov/30287223/

561.Beckermann, K.E., et al. Clinical and immunologic correlates of response to PD-1 blockade in a patient with metastatic renal medullary carcinoma. J Immunother Cancer, 2017. 5: 1.

https://pubmed.ncbi.nlm.nih.gov/28105368/

562.Sodji, Q., et al. Predictive role of PD-L1 expression in the response of renal Medullary carcinoma to PD-1 inhibition. J Immunother Cancer, 2017. 5: 62.

https://pubmed.ncbi.nlm.nih.gov/28807004/

563.Rathmell, W.K., et al. High-dose-intensity MVAC for Advanced Renal Medullary Carcinoma: Report of Three Cases and Literature Review. Urology, 2008. 72: 659.

https://pubmed.ncbi.nlm.nih.gov/18649931/

564.Jonasch, E., et al. Belzutifan for Renal Cell Carcinoma in von Hippel-Lindau Disease. N Engl J Med, 2021. 385: 2036.

https://pubmed.ncbi.nlm.nih.gov/34818478/

565.Jonasch, E., et al. Pazopanib in patients with von Hippel-Lindau disease: a single-arm, single-centre, phase 2 trial. Lancet Oncol, 2018. 19: 1351.

https://pubmed.ncbi.nlm.nih.gov/30236511/

566.Srinivasan, R., et al. LBA69 - Belzutifan, a HIF-2α Inhibitor, for von Hippel-Lindau (VHL) disease-associated neoplasms: 36 months of follow-up of the phase II LITESPARK-004 study. Ann Oncol, 2022. 33: S808.

https://oncologypro.esmo.org/meeting-resources/esmo-congress/belzutifan-a-hif-2a-inhibitor-for-von-hippel-lindau-vhl-disease-associated-neoplasms-36-months-of-follow-up-of-the-phase-ii-litespark-004-study

567.Antonelli, A., et al. Features of Ipsilateral Renal Recurrences After Partial Nephrectomy: A Proposal of a Pathogenetic Classification. Clin Genitourin Cancer, 2017. 15: 540.

https://pubmed.ncbi.nlm.nih.gov/28533051/

568.Bertolo, R., et al. Low Rate of Cancer Events After Partial Nephrectomy for Renal Cell Carcinoma: Clinicopathologic Analysis of 1994 Cases with Emphasis on Definition of “Recurrence”. Clin Genitourin Cancer, 2019. 17: 209.

https://pubmed.ncbi.nlm.nih.gov/31000486/

569.Kreshover, J.E., et al. Renal cell recurrence for T1 tumors after laparoscopic partial nephrectomy.
J Endourol, 2013. 27: 1468.

https://pubmed.ncbi.nlm.nih.gov/24074156/

570.Wah, T.M., et al. Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 200 tumours. BJU Int, 2014. 113: 416.

https://pubmed.ncbi.nlm.nih.gov/24053769/

571.Herout, R., et al. Surgical resection of locally recurrent renal cell carcinoma after nephrectomy: Oncological outcome and predictors of survival. Urol Oncol, 2018. 36: 11 e1.

https://pubmed.ncbi.nlm.nih.gov/28927783/

572.Thomas, A.Z., et al. Surgical Management of Local Retroperitoneal Recurrence of Renal Cell Carcinoma after Radical Nephrectomy. J Urol, 2015. 194: 316.

https://pubmed.ncbi.nlm.nih.gov/25758610/

573.Marchioni, M., et al. Management of local recurrence after radical nephrectomy: surgical removal with or without systemic treatment is still the gold standard. Results from a multicenter international cohort. Int Urol Nephrol, 2021. 53: 2273.

https://pubmed.ncbi.nlm.nih.gov/34417970/

574.Itano, N.B., et al. Outcome of isolated renal cell carcinoma fossa recurrence after nephrectomy.
J Urol, 2000. 164: 322.

https://pubmed.ncbi.nlm.nih.gov/10893575/

575.Margulis, V., et al. Predictors of oncological outcome after resection of locally recurrent renal cell carcinoma. J Urol, 2009. 181: 2044.

https://pubmed.ncbi.nlm.nih.gov/19286220/

576.Russell, C.M., et al. Multi-institutional Survival Analysis of Incidental Pathologic T3a Upstaging in Clinical T1 Renal Cell Carcinoma Following Partial Nephrectomy. Urology, 2018. 117: 95.

https://pubmed.ncbi.nlm.nih.gov/29678662/

577.Srivastava, A., et al. Incidence of T3a up-staging and survival after partial nephrectomy: Size-stratified rates and implications for prognosis. Urol Oncol, 2018. 36: 12.e7.

https://pubmed.ncbi.nlm.nih.gov/28970053/

578.Sandhu, S.S., et al. Surgical excision of isolated renal-bed recurrence after radical nephrectomy for renal cell carcinoma. BJU Int, 2005. 95: 522.

https://pubmed.ncbi.nlm.nih.gov/15705072/

579.Master, V.A., et al. Management of isolated renal fossa recurrence following radical nephrectomy.
J Urol, 2005. 174: 473.

https://pubmed.ncbi.nlm.nih.gov/16006867/

580.Psutka, S.P., et al. Renal fossa recurrence after nephrectomy for renal cell carcinoma: prognostic features and oncological outcomes. BJU Int, 2017. 119: 116.

https://pubmed.ncbi.nlm.nih.gov/27489013/

581.Martini, A., et al. Salvage Robot-assisted Renal Surgery for Local Recurrence After Surgical Resection or Renal Mass Ablation: Classification, Techniques, and Clinical Outcomes. Eur Urol, 2021. 80: 730.

https://pubmed.ncbi.nlm.nih.gov/34088520/

582.Ierardi, A.M., et al. Percutaneous microwave ablation therapy of renal cancer local relapse after radical nephrectomy: a feasibility and efficacy study. Medical Oncology, 2020. 37: 27.

https://pubmed.ncbi.nlm.nih.gov/32166412/

583.Ushijima, Y., et al. Cryoablation for Secondary Renal Cell Carcinoma After Surgical Nephrectomy. Cardiovasc Intervent Radiol, 2021. 44: 414.

https://pubmed.ncbi.nlm.nih.gov/33205290/

584.Johnson, A., et al. Feasibility and outcomes of repeat partial nephrectomy. J Urol, 2008. 180: 89.

https://pubmed.ncbi.nlm.nih.gov/18485404/

585.Mouracade, P., et al. Imaging strategy and outcome following partial nephrectomy. Urol Oncol, 2017. 35: 660.e1.

https://pubmed.ncbi.nlm.nih.gov/28863862/

586.Dabestani, S., et al. Increased use of cross-sectional imaging for follow-up does not improve post-recurrence survival of surgically treated initially localized R.C.C.: results from a European multicenter database (R.E.C.U.R.). Scand J Urol, 2019. 53: 14.

https://pubmed.ncbi.nlm.nih.gov/30907214/

587.Rieken, M., et al. Predictors of Cancer-specific Survival After Disease Recurrence in Patients With Renal Cell Carcinoma: The Effect of Time to Recurrence. Clin Genitourin Cancer, 2018. 16: e903.

https://pubmed.ncbi.nlm.nih.gov/29653814/

588.Capitanio, U., et al. Hypertension and Cardiovascular Morbidity Following Surgery for Kidney Cancer. Eur Urol Oncol, 2020. 3: 209.

https://pubmed.ncbi.nlm.nih.gov/31411993/

589.Lam, J.S., et al. Renal cell carcinoma 2005: new frontiers in staging, prognostication and targeted molecular therapy. J Urol, 2005. 173: 1853.

https://pubmed.ncbi.nlm.nih.gov/15879764/

590.Scoll, B.J., et al. Age, tumor size and relative survival of patients with localized renal cell carcinoma: a surveillance, epidemiology and end results analysis. J Urol, 2009. 181: 506.

https://pubmed.ncbi.nlm.nih.gov/19084868/

591.Beisland, C., et al. A prospective risk-stratified follow-up programme for radically treated renal cell carcinoma patients: evaluation after eight years of clinical use. World J Urol, 2016. 34: 1087.

https://pubmed.ncbi.nlm.nih.gov/26922650/

592.Stewart-Merrill, S.B., et al. Oncologic Surveillance After Surgical Resection for Renal Cell Carcinoma: A Novel Risk-Based Approach. J Clin Oncol, 2015. 33: 4151.

https://pubmed.ncbi.nlm.nih.gov/26351352/

593.Dabestani, S., et al. Long-term Outcomes of Follow-up for Initially Localised Clear Cell Renal Cell Carcinoma: RECUR Database Analysis. Eur Urol Focus, 2019. 5: 857.

https://pubmed.ncbi.nlm.nih.gov/29525381/

594.Rini, B.I., et al. Validation of the 16-Gene Recurrence Score in Patients with Locoregional, High-Risk Renal Cell Carcinoma from a Phase III Trial of Adjuvant Sunitinib. Clin Cancer Res, 2018. 24: 4407.

https://pubmed.ncbi.nlm.nih.gov/29773662/

595.Bruno, J.J., 2nd, et al. Renal cell carcinoma local recurrences: impact of surgical treatment and concomitant metastasis on survival. BJU Int, 2006. 97: 933.

https://pubmed.ncbi.nlm.nih.gov/16643473/

596.Bani-Hani, A.H., et al. Associations with contralateral recurrence following nephrectomy for renal cell carcinoma using a cohort of 2,352 patients. J Urol, 2005. 173: 391.

https://pubmed.ncbi.nlm.nih.gov/15643178/

597.Schaner, E.G., et al. Comparison of computed and conventional whole lung tomography in detecting pulmonary nodules: a prospective radiologic-pathologic study. Am J Roentgenol, 1978. 131: 51.

https://pubmed.ncbi.nlm.nih.gov/97985/

598.Patel, T. Lung Metastases Imaging. 2017.

https://emedicine.medscape.com/article/358090-overview

599.Chang, A.E., et al. Evaluation of computed tomography in the detection of pulmonary metastases: a prospective study. Cancer, 1979. 43: 913.

https://pubmed.ncbi.nlm.nih.gov/284842/

600.Doornweerd, B.H., et al. Chest X-ray in the follow-up of renal cell carcinoma. World J Urol, 2014.
32: 1015.

https://pubmed.ncbi.nlm.nih.gov/24096433/

601.Sountoulides, P., et al. Atypical presentations and rare metastatic sites of renal cell carcinoma: a review of case reports. J Med Case Rep, 2011. 5: 429.

https://pubmed.ncbi.nlm.nih.gov/21888643/

602.Kattan, M.W., et al. A postoperative prognostic nomogram for renal cell carcinoma. J Urol, 2001. 166: 63.

https://pubmed.ncbi.nlm.nih.gov/11435824/

603.Lam, J.S., et al. Postoperative surveillance protocol for patients with localized and locally advanced renal cell carcinoma based on a validated prognostic nomogram and risk group stratification system. J Urol, 2005. 174: 466.

https://pubmed.ncbi.nlm.nih.gov/16006866/

604.Cindolo, L., et al. Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study. Cancer, 2005. 104: 1362.

https://pubmed.ncbi.nlm.nih.gov/16116599/

605.Skolarikos, A., et al. A review on follow-up strategies for renal cell carcinoma after nephrectomy. Eur Urol, 2007. 51: 1490.

https://pubmed.ncbi.nlm.nih.gov/17229521/

606.Chin, A.I., et al. Surveillance strategies for renal cell carcinoma patients following nephrectomy. Rev Urol, 2006. 8: 1.

https://pubmed.ncbi.nlm.nih.gov/16985554/

607.Karakiewicz, P.I., et al. A preoperative prognostic model for patients treated with nephrectomy for renal cell carcinoma. Eur Urol, 2009. 55: 287.

https://pubmed.ncbi.nlm.nih.gov/18715700/

608.Cho, H., et al. Comorbidity-adjusted life expectancy: a new tool to inform recommendations for optimal screening strategies. Ann Intern Med, 2013. 159: 667.

https://pubmed.ncbi.nlm.nih.gov/24247672/