9. REFERENCES
1.Rouprêt, M., et al. EAU Guidelines on Urothelial Carcinomas of the Upper Urinary Tract 2023. Edn. presented at the 38th EAU Annual Congress Milan. European Association of Urology Guidelines Office Arnhem, The Netherlands.
https://uroweb.org/guidelines/upper-urinary-tract-urothelial-cell-carcinoma
2.Witjes, J., et al. EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer 2022. Edn. presented at the 38th EAU Annual Congress Milan. European Association of Urology Guidelines Office Arnhem, The Netherlands.
https://uroweb.org/guidelines/non-muscle-invasive-bladder-cancer/chapter/references
3.Gakis, G., et al. Guidelines on Primary Urethral Carcinoma 2023. Edn. presented at the 38th EAU Annual Congress Milan. European Association of Urology Guidelines Office Arnhem, The Netherlands.
https://uroweb.org/guidelines/primary-urethral-carcinoma
4.Babjuk, M., et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur Urol, 2022. 81: 75.
https://pubmed.ncbi.nlm.nih.gov/34511303/
5.Mostafid, H., et al. Best Practices to Optimise Quality and Outcomes of Transurethral Resection of Bladder Tumours. Eur Urol Oncol, 2021. 4: 12.
https://pubmed.ncbi.nlm.nih.gov/32684515/
6.Suarez-Ibarrola, R., et al. Surgical checklist impact on recurrence-free survival of patients with non-muscle-invasive bladder cancer undergoing transurethral resection of bladder tumour. BJU Int, 2019. 123: 646.
https://pubmed.ncbi.nlm.nih.gov/30248235/
7.European Medicines Agency. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. 2019. [Access date: March 2022]
8.Laukhtina, E., et al. Diagnostic Accuracy of Novel Urinary Biomarker Tests in Non-muscle-invasive Bladder Cancer: A Systematic Review and Network Meta-analysis. Eur Urol Oncol, 2021. 4: 927.
https://pubmed.ncbi.nlm.nih.gov/34753702/
9.Phillips, B. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. 1998.
10.Guyatt, G.H., et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008. 336: 924.
https://pubmed.ncbi.nlm.nih.gov/18436948/
11.Guyatt, G.H., et al. What is “quality of evidence” and why is it important to clinicians? BMJ, 2008. 336: 995.
https://pubmed.ncbi.nlm.nih.gov/18456631/
12.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.
https://pubmed.ncbi.nlm.nih.gov/18467413/
13.IARC, Cancer Today. Estimated number of new cases in 2020, worldwide, both sexes, all ages. 2021. [Access date: March 2022]
https://gco.iarc.fr/today/online-analysis-table
14.Burger, M., et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol, 2013. 63: 234.
https://pubmed.ncbi.nlm.nih.gov/22877502/
15.Teoh, J.Y., et al. Global Trends of Bladder Cancer Incidence and Mortality, and Their Associations with Tobacco Use and Gross Domestic Product Per Capita. Eur Urol, 2020. 78: 893.
https://pubmed.ncbi.nlm.nih.gov/32972792/
16.Comperat, E., et al. Clinicopathological characteristics of urothelial bladder cancer in patients less than 40 years old. Virchows Arch, 2015. 466: 589.
https://pubmed.ncbi.nlm.nih.gov/25697540/
17.Freedman, N.D., et al. Association between smoking and risk of bladder cancer among men and women. JAMA, 2011. 306: 737.
https://pubmed.ncbi.nlm.nih.gov/21846855/
18.van Osch, F.H., et al. Quantified relations between exposure to tobacco smoking and bladder cancer risk: a meta-analysis of 89 observational studies. Int J Epidemiol, 2016. 45: 857.
https://pubmed.ncbi.nlm.nih.gov/27097748/
19.Laaksonen, M.A., et al. The future burden of kidney and bladder cancers preventable by behavior modification in Australia: A pooled cohort study. Int J Cancer, 2020. 146: 874.
https://pubmed.ncbi.nlm.nih.gov/31107541/
20.Bjurlin, M.A., et al. Carcinogen Biomarkers in the Urine of Electronic Cigarette Users and Implications for the Development of Bladder Cancer: A Systematic Review. Eur Urol Oncol, 2021.
4: 766.
https://pubmed.ncbi.nlm.nih.gov/32192941/
21.Colt, J.S., et al. A case-control study of occupational exposure to metalworking fluids and bladder cancer risk among men. Occup Environ Med, 2014. 71: 667.
https://pubmed.ncbi.nlm.nih.gov/25201311/
22.Pesch, B., et al. Screening for bladder cancer with urinary tumor markers in chemical workers with exposure to aromatic amines. Int Arch Occup Environ Health, 2014. 87: 715.
https://pubmed.ncbi.nlm.nih.gov/24129706/
23.Koutros, S., et al. Diesel exhaust and bladder cancer risk by pathologic stage and grade subtypes. Environ Int, 2020. 135: 105346.
https://pubmed.ncbi.nlm.nih.gov/31864026/
24.Egbers, L., et al. The prognostic value of family history among patients with urinary bladder cancer. Int J Cancer, 2015. 136: 1117.
https://pubmed.ncbi.nlm.nih.gov/24978702/
25.Corral, R., et al. Comprehensive analyses of DNA repair pathways, smoking and bladder cancer risk in Los Angeles and Shanghai. Int J Cancer, 2014. 135: 335.
https://pubmed.ncbi.nlm.nih.gov/24382701/
26.Figueroa, J.D., et al. Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry. Hum Mol Genet, 2016. 25: 1203.
https://pubmed.ncbi.nlm.nih.gov/26732427/
27.Zhong, J.H., et al. Association between APE1 Asp148Glu polymorphism and the risk of urinary cancers: a meta-analysis of 18 case-control studies. Onco Targets Ther, 2016. 9: 1499.
https://pubmed.ncbi.nlm.nih.gov/27042118/
28.Al-Zalabani, A.H., et al. Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses. Eur J Epidemiol, 2016. 31: 811.
https://pubmed.ncbi.nlm.nih.gov/27000312/
29.Wu, J., et al. A Functional rs353293 Polymorphism in the Promoter of miR-143/145 Is Associated with a Reduced Risk of Bladder Cancer. PLoS One, 2016. 11: e0159115.
https://pubmed.ncbi.nlm.nih.gov/27438131/
30.Martin, C., et al. Familial Cancer Clustering in Urothelial Cancer: A Population-Based Case-Control Study. J Natl Cancer Inst, 2018. 110: 527.
https://pubmed.ncbi.nlm.nih.gov/29228305/
31.Yu, E.Y., et al. Family History and Risk of Bladder Cancer: An Analysis Accounting for First- and Second-degree Relatives. Cancer Prev Res (Phila), 2022. 15: 319.
https://pubmed.ncbi.nlm.nih.gov/35027464/
32.Lenfant, L., et al. Genetic variability in 13q33 and 9q34 is linked to aggressiveness patterns and a higher risk of progression of non-muscle-invasive bladder cancer at the time of diagnosis. BJU Int, 2021. 127: 375.
https://pubmed.ncbi.nlm.nih.gov/32975901/
33.Buckland, G., et al. Adherence to the Mediterranean diet and risk of bladder cancer in the EPIC cohort study. Int J Cancer, 2014. 134: 2504.
https://pubmed.ncbi.nlm.nih.gov/24226765/
34.Liu, H., et al. Fruit and vegetable consumption and risk of bladder cancer: an updated meta-analysis of observational studies. Eur J Cancer Prev, 2015. 24: 508.
https://pubmed.ncbi.nlm.nih.gov/25642791/
35.Vieira, A.R., et al. Fruits, vegetables, and bladder cancer risk: a systematic review and meta-analysis. Cancer Med, 2015. 4: 136.
https://pubmed.ncbi.nlm.nih.gov/25461441/
36.Zhao, L., et al. Association of body mass index with bladder cancer risk: a dose-response meta-analysis of prospective cohort studies. Oncotarget, 2017. 8: 33990.
https://pubmed.ncbi.nlm.nih.gov/28389625/
37.Rossi, M., et al. Flavonoids and bladder cancer risk. Cancer Causes Control, 2019. 30: 527.
https://pubmed.ncbi.nlm.nih.gov/30903485/
38.Witlox, W.J.A., et al. An inverse association between the Mediterranean diet and bladder cancer risk: a pooled analysis of 13 cohort studies. Eur J Nutr, 2020. 59: 287.
https://pubmed.ncbi.nlm.nih.gov/30737562/
39.Dianatinasab, M., et al. Dietary fats and their sources in association with the risk of bladder cancer: A pooled analysis of 11 prospective cohort studies. Int J Cancer, 2022. 151: 44.
https://pubmed.ncbi.nlm.nih.gov/35182086/
40.Dianatinasab, M., et al. The association between meat and fish consumption and bladder cancer risk: a pooled analysis of 11 cohort studies. Eur J Epidemiol, 2021. 36: 781.
https://pubmed.ncbi.nlm.nih.gov/34036467/
41.Jochems, S.H.J., et al. Fruit consumption and the risk of bladder cancer: A pooled analysis by the Bladder Cancer Epidemiology and Nutritional Determinants Study. Int J Cancer, 2020. 147: 2091.
https://pubmed.ncbi.nlm.nih.gov/32285440/
42.Al-Zalabani, A.H., et al. Tea consumption and risk of bladder cancer in the Bladder Cancer Epidemiology and Nutritional Determinants (BLEND) Study: Pooled analysis of 12 international cohort studies. Clin Nutr, 2022. 41: 1122.
https://pubmed.ncbi.nlm.nih.gov/35413574/
43.Steinmaus, C., et al. Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure. Cancer Epidemiol Biomarkers Prev, 2014. 23: 1529.
https://pubmed.ncbi.nlm.nih.gov/24859871/
44.Koutros, S., et al. Potential effect modifiers of the arsenic-bladder cancer risk relationship. Int
J Cancer, 2018. 143: 2640.
https://pubmed.ncbi.nlm.nih.gov/29981168/
45.Arafa, A., et al. Chronic exposure to nitrate in drinking water and the risk of bladder cancer: a meta-analysis of epidemiological evidence. Public Health, 2022. 203: 123.
https://pubmed.ncbi.nlm.nih.gov/35063929/
46.Zhang, Y., et al. Personal use of permanent hair dyes and cancer risk and mortality in US women: prospective cohort study. BMJ, 2020. 370: m2942.
https://pubmed.ncbi.nlm.nih.gov/32878860/
47.Teleka, S., et al. Risk of bladder cancer by disease severity in relation to metabolic factors and smoking: A prospective pooled cohort study of 800,000 men and women. Int J Cancer, 2018.
143: 3071.
https://pubmed.ncbi.nlm.nih.gov/29756343/
48.Hektoen, H.H., et al. Vitamin D and Vitamin D-binding protein and risk of bladder cancer: A nested case-control study in the Norwegian Janus Serum Bank Cohort. Cancer Med, 2021. 10: 4107.
https://pubmed.ncbi.nlm.nih.gov/34080787/
49.Moschini, M., et al. External Beam Radiotherapy Increases the Risk of Bladder Cancer When Compared with Radical Prostatectomy in Patients Affected by Prostate Cancer: A Population-based Analysis. Eur Urol, 2019. 75: 319.
https://pubmed.ncbi.nlm.nih.gov/30293908/
50.Tuccori, M., et al. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ, 2016. 352: i1541.
https://pubmed.ncbi.nlm.nih.gov/27029385/
51.Otto, W., et al. WHO 1973 grade 3 and infiltrative growth pattern proved, aberrant E-cadherin expression tends to be of predictive value for progression in a series of stage T1 high-grade bladder cancer after organ-sparing approach. Int Urol Nephrol, 2017. 49: 431.
https://pubmed.ncbi.nlm.nih.gov/28035618/
52.van Rhijn, B.W., et al. A new and highly prognostic system to discern T1 bladder cancer substage. Eur Urol, 2012. 61: 378.
https://pubmed.ncbi.nlm.nih.gov/22036775/
53.Compérat, E., et al. What’s new in WHO fifth edition1398042195-1398042195urinary tract. Histopathology, 2022. 81: 439.
https://pubmed.ncbi.nlm.nih.gov/35942645/
54.WHO Classification of Tumours Editorial Board. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 8th edn. 2022, Lyon, France.
https://publications.iarc.fr/610
55.Moch, H., et al. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th ed. 2016, Lyon, France
56.Compérat, E., et al. The Genitourinary Pathology Society Update on Classification of Variant Histologies, T1 Substaging, Molecular Taxonomy, and Immunotherapy and PD-L1 Testing Implications of Urothelial Cancers. Adv Anat Pathol, 2021. 28: 196.
https://pubmed.ncbi.nlm.nih.gov/34128484/
57.Kim, H.S., et al. Presence of lymphovascular invasion in urothelial bladder cancer specimens after transurethral resections correlates with risk of upstaging and survival: a systematic review and meta-analysis. Urol Oncol, 2014. 32: 1191.
https://pubmed.ncbi.nlm.nih.gov/24954108/
58.Tilki, D., et al. Lymphovascular invasion is independently associated with bladder cancer recurrence and survival in patients with final stage T1 disease and negative lymph nodes after radical cystectomy. BJU Int, 2013. 111: 1215.
https://pubmed.ncbi.nlm.nih.gov/23181623/
59.Martin-Doyle, W., et al. Improving selection criteria for early cystectomy in high-grade t1 bladder cancer: a meta-analysis of 15,215 patients. J Clin Oncol, 2015. 33: 643.
https://pubmed.ncbi.nlm.nih.gov/25559810/
60.Mari, A., et al. A systematic review and meta-analysis of the impact of lymphovascular invasion in bladder cancer transurethral resection specimens. BJU Int, 2019. 123: 11.
https://pubmed.ncbi.nlm.nih.gov/29807387/
61.D’Andrea, D., Abufaraj, M., Susani, M., Ristl, R., Foerster, B., Kimura, S., et al. Accurate prediction of progression to muscle-invasive disease in patients with pT1G3 bladder cancer: A clinical decision-making tool. Urol Oncol, 2018. 36: 239.e1.
https://pubmed.ncbi.nlm.nih.gov/29506941/
62.Sauter G., et al. Tumours of the urinary system: non-invasive urothelial neoplasias. In: WHO classification of classification of tumours of the urinary system and male genital organs. Eds. 2004, IARCC Press: Lyon.
63.Soukup, V., et al. Prognostic Performance and Reproducibility of the 1973 and 2004/2016 World Health Organization Grading Classification Systems in Non-muscle-invasive Bladder Cancer: A European Association of Urology Non-muscle Invasive Bladder Cancer Guidelines Panel Systematic Review. Eur Urol, 2017. 72: 801.
https://pubmed.ncbi.nlm.nih.gov/28457661/
64.Hentschel, A.E., et al. Papillary urothelial neoplasm of low malignant potential (PUN-LMP): Still a meaningful histo-pathological grade category for Ta, noninvasive bladder tumors in 2019? Urol Oncol, 2020. 38: 440.
https://pubmed.ncbi.nlm.nih.gov/31704141/
65.Sylvester, R.J., et al. European Association of Urology (EAU) Prognostic Factor Risk Groups for Non-muscle-invasive Bladder Cancer (NMIBC) Incorporating the WHO 2004/2016 and WHO 1973 Classification Systems for Grade: An Update from the EAU NMIBC Guidelines Panel. Eur Urol,
2021: 480.
https://pubmed.ncbi.nlm.nih.gov/33419683/
66.Andersson, M., et al. The diagnostic challenge of suspicious or positive malignant urine cytology findings when cystoscopy findings are normal: an outpatient blue-light flexible cystoscopy may solve the problem. Scand J Urol, 2021. 55: 263.
https://pubmed.ncbi.nlm.nih.gov/34037496/
67.Lamm, D., et al. Updated concepts and treatment of carcinoma in situ. Urol Oncol, 1998. 4: 130.
https://pubmed.ncbi.nlm.nih.gov/21227218/
68.Witjes, J.A., et al. Review pathology in a diagnostic bladder cancer trial: effect of patient risk category. Urology, 2006. 67: 751.
https://pubmed.ncbi.nlm.nih.gov/16566990/
69.May, M., et al. Prognostic accuracy of individual uropathologists in noninvasive urinary bladder carcinoma: a multicentre study comparing the 1973 and 2004 World Health Organisation classifications. Eur Urol, 2010. 57: 850.
https://pubmed.ncbi.nlm.nih.gov/19346063/
70.van Rhijn, B.W., et al. Pathological stage review is indicated in primary pT1 bladder cancer. BJU Int, 2010. 106: 206.
https://pubmed.ncbi.nlm.nih.gov/20002439/
71.Comperat, E., et al. An interobserver reproducibility study on invasiveness of bladder cancer using virtual microscopy and heatmaps. Histopathology, 2013. 63: 756.
https://pubmed.ncbi.nlm.nih.gov/24102813/
72.Mangrud, O.M., et al. Reproducibility and prognostic value of WHO1973 and WHO2004 grading systems in TaT1 urothelial carcinoma of the urinary bladder. PLoS One, 2014. 9: e83192.
https://pubmed.ncbi.nlm.nih.gov/24409280/
73.Veskimae, E., et al. What Is the Prognostic and Clinical Importance of Urothelial and Nonurothelial Histological Variants of Bladder Cancer in Predicting Oncological Outcomes in Patients with Muscle-invasive and Metastatic Bladder Cancer? A European Association of Urology Muscle Invasive and Metastatic Bladder Cancer Guidelines Panel Systematic Review. Eur Urol Oncol, 2019. 2: 625.
https://pubmed.ncbi.nlm.nih.gov/31601522/
74.Comperat, E.M., et al. Grading of Urothelial Carcinoma and The New “World Health Organisation Classification of Tumours of the Urinary System and Male Genital Organs 2016”. Eur Urol Focus, 2019. 5: 457.
https://pubmed.ncbi.nlm.nih.gov/29366854/
75.Willis, D.L., et al. Clinical outcomes of cT1 micropapillary bladder cancer. J Urol, 2015. 193: 1129.
https://pubmed.ncbi.nlm.nih.gov/25254936/
76.Comperat, E., et al. Micropapillary urothelial carcinoma of the urinary bladder: a clinicopathological analysis of 72 cases. Pathology, 2010. 42: 650.
https://pubmed.ncbi.nlm.nih.gov/21080874/
77.Kaimakliotis, H.Z., et al. Plasmacytoid variant urothelial bladder cancer: is it time to update the treatment paradigm? Urol Oncol, 2014. 32: 833.
https://pubmed.ncbi.nlm.nih.gov/24954925/
78.Willis, D.L., et al. Micropapillary bladder cancer: current treatment patterns and review of the literature. Urol Oncol, 2014. 32: 826.
https://pubmed.ncbi.nlm.nih.gov/24931270/
79.Beltran, A.L., et al. Clinicopathological characteristics and outcome of nested carcinoma of the urinary bladder. Virchows Arch, 2014. 465: 199.
https://pubmed.ncbi.nlm.nih.gov/24878757/
80.Soave, A., et al. Does the extent of variant histology affect oncological outcomes in patients with urothelial carcinoma of the bladder treated with radical cystectomy? Urol Oncol, 2015. 33: 21 e1.
https://pubmed.ncbi.nlm.nih.gov/25465301/
81.Masson-Lecomte, A., et al. Oncological outcomes of advanced muscle-invasive bladder cancer with a micropapillary variant after radical cystectomy and adjuvant platinum-based chemotherapy. World J Urol, 2015. 33: 1087.
https://pubmed.ncbi.nlm.nih.gov/25179011/
82.Seisen, T., et al. Impact of histological variants on the outcomes of nonmuscle invasive bladder cancer after transurethral resection. Curr Opin Urol, 2014. 24: 524.
https://pubmed.ncbi.nlm.nih.gov/25051021/
83.Burger, M., et al. Prediction of progression of non-muscle-invasive bladder cancer by WHO 1973 and 2004 grading and by FGFR3 mutation status: a prospective study. Eur Urol, 2008. 54: 835.
https://pubmed.ncbi.nlm.nih.gov/18166262/
84.Fristrup, N., et al. Cathepsin E, maspin, Plk1, and survivin are promising prognostic protein markers for progression in non-muscle invasive bladder cancer. Am J Pathol, 2012. 180: 1824.
https://pubmed.ncbi.nlm.nih.gov/22449953/
85.Palou, J., et al. Protein expression patterns of ezrin are predictors of progression in T1G3 bladder tumours treated with nonmaintenance bacillus Calmette-Guerin. Eur Urol, 2009. 56: 829.
https://pubmed.ncbi.nlm.nih.gov/18926620/
86.van Rhijn, B.W., et al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol, 2012. 187: 310.
https://pubmed.ncbi.nlm.nih.gov/22099989/
87.Remy, E., et al. A Modeling Approach to Explain Mutually Exclusive and Co-Occurring Genetic Alterations in Bladder Tumorigenesis. Cancer Res, 2015. 75: 4042.
https://pubmed.ncbi.nlm.nih.gov/26238783/
88.Dyrskjot, L., et al. Prognostic Impact of a 12-gene Progression Score in Non-muscle-invasive Bladder Cancer: A Prospective Multicentre Validation Study. Eur Urol, 2017. 72: 461.
https://pubmed.ncbi.nlm.nih.gov/28583312/
89.Marzouka, N.A., et al. The Lund Molecular Taxonomy Applied to Non-Muscle-Invasive Urothelial Carcinoma. J Mol Diagn, 2022. 24: 992.
https://pubmed.ncbi.nlm.nih.gov/35853574/
90.Ramirez, D., et al. Microscopic haematuria at time of diagnosis is associated with lower disease stage in patients with newly diagnosed bladder cancer. BJU Int, 2016. 117: 783.
https://pubmed.ncbi.nlm.nih.gov/26435378/
91.Trinh, T.W., et al. Bladder cancer diagnosis with CT urography: test characteristics and reasons for false-positive and false-negative results. Abdom Radiol (NY), 2018. 43: 663.
https://pubmed.ncbi.nlm.nih.gov/28677000/
92.Nolte-Ernsting, C., et al. Understanding multislice CT urography techniques: Many roads lead to Rome. Eur Radiol, 2006. 16: 2670.
https://pubmed.ncbi.nlm.nih.gov/16953373/
93.Goessl, C., et al. Is routine excretory urography necessary at first diagnosis of bladder cancer?
J Urol, 1997. 157: 480.
https://pubmed.ncbi.nlm.nih.gov/8996338/
94.Palou, J., et al. Multivariate analysis of clinical parameters of synchronous primary superficial bladder cancer and upper urinary tract tumor. J Urol, 2005. 174: 859.
https://pubmed.ncbi.nlm.nih.gov/16093970/
95.Holmang, S., et al. Long-term followup of a bladder carcinoma cohort: routine followup urography is not necessary. J Urol, 1998. 160: 45.
https://pubmed.ncbi.nlm.nih.gov/9628602/
96.Millan-Rodriguez, F., et al. Upper urinary tract tumors after primary superficial bladder tumors: prognostic factors and risk groups. J Urol, 2000. 164: 1183.
https://pubmed.ncbi.nlm.nih.gov/10992362/
97.Tan, W.S., et al. Can Renal and Bladder Ultrasound Replace Computerized Tomography Urogram in Patients Investigated for Microscopic Hematuria? J Urol, 2018. 200: 973.
https://pubmed.ncbi.nlm.nih.gov/29702097/
98.Hilton, S., et al. Recent advances in imaging cancer of the kidney and urinary tract. Surg Oncol Clin N Am, 2014. 23: 863.
https://pubmed.ncbi.nlm.nih.gov/25246053/
99.Panebianco, V., et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur Urol, 2018. 74: 294.
https://pubmed.ncbi.nlm.nih.gov/29755006/
100.Del Giudice, F., et al. Systematic Review and Meta-Analysis of Vesical Imaging-Reporting and Data System (VI-RADS) Inter-Observer Reliability: An Added Value for Muscle Invasive Bladder Cancer Detection. Cancers (Basel), 2020. 12: 2994.
https://pubmed.ncbi.nlm.nih.gov/33076505/
101.Yafi, F.A., et al. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol Oncol, 2015. 33: 66 e25.
https://pubmed.ncbi.nlm.nih.gov/25037483/
102.Tetu, B. Diagnosis of urothelial carcinoma from urine. Mod Pathol, 2009. 22 Suppl 2: S53.
https://pubmed.ncbi.nlm.nih.gov/19494853/
103.Raitanen, M.P., et al. Differences between local and review urinary cytology in diagnosis of bladder cancer. An interobserver multicenter analysis. Eur Urol, 2002. 41: 284.
https://pubmed.ncbi.nlm.nih.gov/12180229/
104.Karakiewicz, P.I., et al. Institutional variability in the accuracy of urinary cytology for predicting recurrence of transitional cell carcinoma of the bladder. BJU Int, 2006. 97: 997.
https://pubmed.ncbi.nlm.nih.gov/16542342/
105.Lebret, T., et al. Artificial intelligence to improve cytology performances in bladder carcinoma detection: results of the VisioCyt test. BJU Int, 2022. 129: 356.
https://pubmed.ncbi.nlm.nih.gov/33751774/
106.Wojcik , E.M., et al. The Paris System for Reporting Urinary Cytology. 2022, Springer.
https://link.springer.com/book/10.1007/978-3-030-88686-8
107.Cowan, M.L., et al. Improved risk stratification for patients with high-grade urothelial carcinoma following application of the Paris System for Reporting Urinary Cytology. Cancer Cytopathol, 2017. 125: 427.
https://pubmed.ncbi.nlm.nih.gov/28272842/
108.Pastorello, R.G., et al. Experience on the use of The Paris System for Reporting Urinary Cytopathology: review of the published literature. J Am Soc Cytopathol, 2021. 10: 79.
https://pubmed.ncbi.nlm.nih.gov/33160893/
109.Burton, J.L., et al. Demand management in urine cytology: a single cytospin slide is sufficient. J Clin Pathol, 2000. 53: 718.
https://pubmed.ncbi.nlm.nih.gov/11041065/
110.Nabi, G., et al. Suspicious urinary cytology with negative evaluation for malignancy in the diagnostic investigation of haematuria: how to follow up? J Clin Pathol, 2004. 57: 365.
https://pubmed.ncbi.nlm.nih.gov/15047737/
111.Soria, F., et al. An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer. World J Urol, 2018. 36: 1981.
https://pubmed.ncbi.nlm.nih.gov/29931526/
112.Lokeshwar, V.B., et al. Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. Urology, 2005. 66: 35.
https://pubmed.ncbi.nlm.nih.gov/16399415/
113.van Rhijn, B.W., et al. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol, 2005. 47: 736.
https://pubmed.ncbi.nlm.nih.gov/15925067/
114.Lotan, Y., et al. Considerations on implementing diagnostic markers into clinical decision making in bladder cancer. Urol Oncol, 2010. 28: 441.
https://pubmed.ncbi.nlm.nih.gov/20610281/
115.Liem, E., et al. The Role of Fluorescence In Situ Hybridization for Predicting Recurrence after Adjuvant bacillus Calmette-Guérin in Patients with Intermediate and High Risk Nonmuscle Invasive Bladder Cancer: A Systematic Review and Meta-Analysis of Individual Patient Data. J Urol, 2020. 203: 283.
https://pubmed.ncbi.nlm.nih.gov/31549936/
116.Lotan, Y., et al. Evaluation of the Fluorescence In Situ Hybridization Test to Predict Recurrence and/or Progression of Disease after bacillus Calmette-Guérin for Primary High Grade Nonmuscle Invasive Bladder Cancer: Results from a Prospective Multicenter Trial. J Urol, 2019. 202: 920.
https://pubmed.ncbi.nlm.nih.gov/31120373/
117.Kamat, A.M., et al. Prospective trial to identify optimal bladder cancer surveillance protocol: reducing costs while maximizing sensitivity. BJU Int, 2011. 108: 1119.
https://pubmed.ncbi.nlm.nih.gov/21426474/
118.Beukers, W., et al. FGFR3, TERT and OTX1 as a Urinary Biomarker Combination for Surveillance of Patients with Bladder Cancer in a Large Prospective Multicenter Study. J Urol, 2017. 197: 1410.
https://pubmed.ncbi.nlm.nih.gov/28049011/
119.Kavalieris, L., et al. Performance Characteristics of a Multigene Urine Biomarker Test for Monitoring for Recurrent Urothelial Carcinoma in a Multicenter Study. J Urol, 2017. 197: 1419.
https://pubmed.ncbi.nlm.nih.gov/27986532/
120.Ribal, M.J., et al. Gene expression test for the non-invasive diagnosis of bladder cancer: A prospective, blinded, international and multicenter validation study. Eur J Cancer, 2016. 54: 131.
https://pubmed.ncbi.nlm.nih.gov/26761785/
121.Critelli, R., et al. Detection of multiple mutations in urinary exfoliated cells from male bladder cancer patients at diagnosis and during follow-up. Oncotarget, 2016. 7: 67435.
https://pubmed.ncbi.nlm.nih.gov/27611947/
122.Roperch, J.P., et al. Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance in patients with low or high-risk non-muscle-invasive bladder cancer. BMC Cancer, 2016. 16: 704.
https://pubmed.ncbi.nlm.nih.gov/27586786/
123.Ward, D.G., et al. Multiplex PCR and Next Generation Sequencing for the Non-Invasive Detection of Bladder Cancer. PLoS One, 2016. 11: e0149756.
https://pubmed.ncbi.nlm.nih.gov/26901314/
124.van der Aa, M.N., et al. Microsatellite analysis of voided-urine samples for surveillance of low-grade non-muscle-invasive urothelial carcinoma: feasibility and clinical utility in a prospective multicenter study (Cost-Effectiveness of Follow-Up of Urinary Bladder Cancer trial [CEFUB]). Eur Urol, 2009.
55: 659.
https://pubmed.ncbi.nlm.nih.gov/18501499/
125.Roupret, M., et al. A comparison of the performance of microsatellite and methylation urine analysis for predicting the recurrence of urothelial cell carcinoma, and definition of a set of markers by Bayesian network analysis. BJU Int, 2008. 101: 1448.
https://pubmed.ncbi.nlm.nih.gov/18325051/
126.Todenhofer, T., et al. Prognostic relevance of positive urine markers in patients with negative cystoscopy during surveillance of bladder cancer. BMC Cancer, 2015. 15: 155.
https://pubmed.ncbi.nlm.nih.gov/25884545/
127.Grossman, H.B., et al. Detection of bladder cancer using a point-of-care proteomic assay. JAMA, 2005. 293: 810.
https://pubmed.ncbi.nlm.nih.gov/15713770/
128.Kim, P.H., et al. Reflex fluorescence in situ hybridization assay for suspicious urinary cytology in patients with bladder cancer with negative surveillance cystoscopy. BJU Int, 2014. 114: 354.
https://pubmed.ncbi.nlm.nih.gov/24128299/
129.Palou, J., et al. Management of Patients with Normal Cystoscopy but Positive Cytology or Urine Markers. Eur Urol Oncol, 2020. 4: 548.
https://pubmed.ncbi.nlm.nih.gov/31331861/
130.Roupret, M., et al. Diagnostic Accuracy of MCM5 for the Detection of Recurrence in Nonmuscle Invasive Bladder Cancer Followup: A Blinded, Prospective Cohort, Multicenter European Study.
J Urol, 2020. 204: 685.
https://pubmed.ncbi.nlm.nih.gov/32314931/
131.Valenberg, F., et al. Prospective Validation of an mRNA-based Urine Test for Surveillance of Patients with Bladder Cancer. Eur Urol, 2019. 75: 853.
https://pubmed.ncbi.nlm.nih.gov/30553612/
132.D’Andrea, D., et al. Diagnostic accuracy, clinical utility and influence on decision-making of a methylation urine biomarker test in the surveillance of non-muscle-invasive bladder cancer. BJU Int, 2019. 123: 959.
https://pubmed.ncbi.nlm.nih.gov/30653818/
133.Konety, B., et al. Evaluation of Cxbladder and Adjudication of Atypical Cytology and Equivocal Cystoscopy. Eur Urol, 2019. 76: 238.
https://pubmed.ncbi.nlm.nih.gov/31103391/
134.Gontero, P., et al. Comparison of the performances of the ADXBLADDER test and urinary cytology in the follow-up of non-muscle-invasive bladder cancer: a blinded prospective multicentric study. BJU Int, 2021. 127: 198.
https://pubmed.ncbi.nlm.nih.gov/32745350/
135.Roupret, M., et al. Reducing the Frequency of Follow-up Cystoscopy in Low-grade pTa Non-muscle-invasive Bladder Cancer Using the ADXBLADDER Biomarker. Eur Urol Focus, 2022. 8: 1643.
https://pubmed.ncbi.nlm.nih.gov/35300937/
136.Cancel-Tassin, G., et al. Assessment of Xpert Bladder Cancer Monitor test performance for the detection of recurrence during non-muscle invasive bladder cancer follow-up. World J Urol, 2021. 39: 3329.
https://pubmed.ncbi.nlm.nih.gov/33770241/
137.Singer, G., et al. The Role of New Technologies in the Diagnosis and Surveillance of Non-Muscle Invasive Bladder Carcinoma: A Prospective, Double-Blinded, Monocentric Study of the XPERT© Bladder Cancer Monitor and Narrow Band Imaging© Cystoscopy. Cancers (Basel), 2022. 14.
https://pubmed.ncbi.nlm.nih.gov/35158886/
138.Starke, N., et al. Long-term outcomes in a high-risk bladder cancer screening cohort. BJU Int, 2016. 117: 611.
https://pubmed.ncbi.nlm.nih.gov/25891519/
139.Roobol, M.J., et al. Feasibility study of screening for bladder cancer with urinary molecular markers (the BLU-P project). Urol Oncol, 2010. 28: 686.
https://pubmed.ncbi.nlm.nih.gov/21062653/
140.Shang, D., et al. Diagnostic value comparison of CellDetect, fluorescent in situ hybridization (FISH), and cytology in urothelial carcinoma. Cancer Cell Int, 2021. 21: 465.
https://pubmed.ncbi.nlm.nih.gov/34488763/
141.Valenberg, F., et al. Validation of an mRNA-based Urine Test for the Detection of Bladder Cancer in Patients with Haematuria. Eur Urol Oncol, 2021. 4: 93.
https://pubmed.ncbi.nlm.nih.gov/33004290/
142.Babjuk, M., et al. Urinary cytology and quantitative BTA and UBC tests in surveillance of patients with pTapT1 bladder urothelial carcinoma. Urology, 2008. 71: 718.
https://pubmed.ncbi.nlm.nih.gov/18387400/
143.van der Aa, M.N., et al. Cystoscopy revisited as the gold standard for detecting bladder cancer recurrence: diagnostic review bias in the randomized, prospective CEFUB trial. J Urol, 2010. 183: 76.
https://pubmed.ncbi.nlm.nih.gov/19913254/
144.Kurth, K.H., et al. Current methods of assessing and treating carcinoma in situ of the bladder with or without involvement of the prostatic urethra. Int J Urol, 1995. 2 Suppl 2: 8.
https://pubmed.ncbi.nlm.nih.gov/7553309/
145.Krajewski, W., et al. How different cystoscopy methods influence patient sexual satisfaction, anxiety, and depression levels: a randomized prospective trial. Qual Life Res, 2017. 26: 625.
https://pubmed.ncbi.nlm.nih.gov/28050795/
146.Aaronson, D.S., et al. Meta-analysis: does lidocaine gel before flexible cystoscopy provide pain relief? BJU Int, 2009. 104: 506.
https://pubmed.ncbi.nlm.nih.gov/19239453/
147.Berajoui, M.B., et al. A Prospective Randomized Controlled Trial of Irrigation “Bag Squeeze” to Manage Pain for Patients Undergoing Flexible Cystoscopy. J Urol, 2020. 204: 1012.
https://pubmed.ncbi.nlm.nih.gov/32396409/
148.Gunendran, T., et al. Does increasing hydrostatic pressure (“bag squeeze”) during flexible cystoscopy improve patient comfort: a randomized, controlled study. Urology, 2008. 72: 255.
https://pubmed.ncbi.nlm.nih.gov/18554699/
149.Teoh, J.Y., et al. An International Collaborative Consensus Statement on En Bloc Resection of Bladder Tumour Incorporating Two Systematic Reviews, a Two-round Delphi Survey, and a Consensus Meeting. Eur Urol, 2020. 78: 546.
https://pubmed.ncbi.nlm.nih.gov/32389447/
150.Anderson, C., et al. A 10-Item Checklist Improves Reporting of Critical Procedural Elements during Transurethral Resection of Bladder Tumor. J Urol, 2016. 196: 1014.
https://pubmed.ncbi.nlm.nih.gov/27044571/
151.Brausi, M., et al. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies. Eur Urol, 2002. 41: 523.
https://pubmed.ncbi.nlm.nih.gov/12074794/
152.Richterstetter, M., et al. The value of extended transurethral resection of bladder tumour (TURBT) in the treatment of bladder cancer. BJU Int, 2012. 110: E76.
https://pubmed.ncbi.nlm.nih.gov/22313727/
153.Chai, Yu-Meng, et al. The efficacy and safety of thulium laser resection of bladder tumor versus standard transurethral resection in patients with non muscle-invasive bladder cancer: a systematic review and meta-analysis. J Mens Health, 2021. 2: 32.
https://doi.org/10.31083/jomh.2021.023
154.Yanagisawa, T., et al. En Bloc Resection for Bladder Tumors: An Updated Systematic Review and Meta-Analysis of Its Differential Effect on Safety, Recurrence and Histopathology. J Urol, 2022.
207: 754.
https://pubmed.ncbi.nlm.nih.gov/35060770/
155.Kramer, M.W., et al. En bloc resection of urothelium carcinoma of the bladder (EBRUC): a European multicenter study to compare safety, efficacy, and outcome of laser and electrical en bloc transurethral resection of bladder tumor. World J Urol, 2015. 33: 1937.
https://pubmed.ncbi.nlm.nih.gov/25910478/
156.Hurle, R., et al. “En Bloc” Resection of Nonmuscle Invasive Bladder Cancer: A Prospective Single-center Study. Urology, 2016. 90: 126.
https://pubmed.ncbi.nlm.nih.gov/26776561/
157.Migliari, R., et al. Thulium Laser Endoscopic En Bloc Enucleation of Nonmuscle-Invasive Bladder Cancer. J Endourol, 2015. 29: 1258.
https://pubmed.ncbi.nlm.nih.gov/26102556/
158.Zhang, X.R., et al. Two Micrometer Continuous-Wave Thulium Laser Treating Primary Non-Muscle-Invasive Bladder Cancer: Is It Feasible? A Randomized Prospective Study. Photomed Laser Surg, 2015. 33: 517.
https://pubmed.ncbi.nlm.nih.gov/26397029/
159.Hashem, A., et al. Holmium Laser En-bloc Resection Versus Conventional Transurethral Resection of Bladder Tumors for Treatment of Non-muscle-invasive Bladder Cancer: A Randomized Clinical Trial. Eur Urol Focus, 2021. 7: 1035.
https://pubmed.ncbi.nlm.nih.gov/33386289/
160.Fan, J., et al. Green-light laser en bloc resection versus conventional transurethral resection for initial non-muscle-invasive bladder cancer: A randomized controlled trial. Int J Urol, 2021. 28: 855.
https://pubmed.ncbi.nlm.nih.gov/34013615/
161.Gallioli, A., et al. En Bloc Versus Conventional Transurethral Resection of Bladder Tumors: A Single-center Prospective Randomized Noninferiority Trial. Eur Urol Oncol, 2022. 5: 440.
https://pubmed.ncbi.nlm.nih.gov/35618567/
162.Kramer, M.W., et al. Current Evidence of Transurethral En-bloc Resection of Nonmuscle Invasive Bladder Cancer. Eur Urol Focus, 2017. 3: 567.
https://pubmed.ncbi.nlm.nih.gov/28753835/
163.Mariappan, P., et al. Detrusor muscle in the first, apparently complete transurethral resection of bladder tumour specimen is a surrogate marker of resection quality, predicts risk of early recurrence, and is dependent on operator experience. Eur Urol, 2010. 57: 843.
https://pubmed.ncbi.nlm.nih.gov/19524354/
164.Taoka, R., et al. Use of surgical checklist during transurethral resection increases detrusor muscle collection rate and improves recurrence-free survival in patients with non-muscle-invasive bladder cancer. Int J Urol, 2021. 28: 727.
https://pubmed.ncbi.nlm.nih.gov/33742465/
165.Mariappan, P., et al. Enhanced Quality and Effectiveness of Transurethral Resection of Bladder Tumour in Non-muscle-invasive Bladder Cancer: A Multicentre Real-world Experience from Scotland’s Quality Performance Indicators Programme. Eur Urol, 2020. 78: 520.
https://pubmed.ncbi.nlm.nih.gov/32690321/
166.Mariappan, P., et al. Good quality white-light transurethral resection of bladder tumours (GQ-WLTURBT) with experienced surgeons performing complete resections and obtaining detrusor muscle reduces early recurrence in new non-muscle-invasive bladder cancer: validation across time and place and recommendation for benchmarking. BJU Int, 2012. 109: 1666.
https://pubmed.ncbi.nlm.nih.gov/22044434/
167.Neumann, E., et al. Transurethral Resection of Bladder Tumors: Next-generation Virtual Reality Training for Surgeons. Eur Urol Focus, 2019. 5: 906.
https://pubmed.ncbi.nlm.nih.gov/29802051/
168.Bebane, S., et al. Perioperative outcomes of transurethral resection for t1 bladder tumors: quality evaluation based on patient, tumor and surgeon criteria. World J Urol, 2021. 11: 4159.
https://pubmed.ncbi.nlm.nih.gov/34160681/
169.Jancke, G., et al. Impact of surgical experience on recurrence and progression after transurethral resection of bladder tumour in non-muscle-invasive bladder cancer. Scand J Urol, 2014. 48: 276.
https://pubmed.ncbi.nlm.nih.gov/24286506/
170.Wettstein, M.S., et al. Association between surgical case volume and survival in T1 bladder cancer: A need for centralization of care? Can Urol Assoc J, 2020. 14: E394.
https://pubmed.ncbi.nlm.nih.gov/PMC7492039/
171.Mao, X., et al. Outcomes and Complications of Bipolar vs. Monopolar Energy for Transurethral Resection of Bladder Tumors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Surg, 2021. 8: 583806.
https://pubmed.ncbi.nlm.nih.gov/34150834/
172.Tzelves, L., et al. Does bipolar energy provide any advantage over monopolar surgery in transurethral resection of non-muscle invasive bladder tumors? A systematic review and meta-analysis. World J Urol, 2021. 39: 1093.
https://pubmed.ncbi.nlm.nih.gov/32591900/
173.Xie, K., et al. Bipolar versus monopolar transurethral resection of non-muscle-invasive bladder cancer: a systematic review and meta-analysis of randomized controlled trials. World J Urol, 2021. 39: 1177.
https://pubmed.ncbi.nlm.nih.gov/32462303/
174.Picozzi, S.C., et al. Is it oncologically safe performing simultaneous transurethral resection of the bladder and prostate? A meta-analysis on 1,234 patients. Int Urol Nephrol, 2012. 44: 1325.
https://pubmed.ncbi.nlm.nih.gov/22710969/
175.Tsivian, A., et al. Simultaneous transurethral resection of bladder tumor and benign prostatic hyperplasia: hazardous or a safe timesaver? J Urol, 2003. 170: 2241.
https://pubmed.ncbi.nlm.nih.gov/14634388/
176.Sari Motlagh, R., et al. The recurrence and progression risk after simultaneous endoscopic surgery of urothelial bladder tumour and benign prostatic hyperplasia: a systematic review and meta-analysis. BJU Int, 2021. 127: 143.
https://pubmed.ncbi.nlm.nih.gov/32564458/
177.van der Meijden, A., et al. Significance of bladder biopsies in Ta,T1 bladder tumors: a report from the EORTC Genito-Urinary Tract Cancer Cooperative Group. EORTC-GU Group Superficial Bladder Committee. Eur Urol, 1999. 35: 267.
https://pubmed.ncbi.nlm.nih.gov/10419345/
178.Hara, T., et al. Risk of concomitant carcinoma in situ determining biopsy candidates among primary non-muscle-invasive bladder cancer patients: retrospective analysis of 173 Japanese cases. Int
J Urol, 2009. 16: 293.
https://pubmed.ncbi.nlm.nih.gov/19207607/
179.Palou, J., et al. Female gender and carcinoma in situ in the prostatic urethra are prognostic factors for recurrence, progression, and disease-specific mortality in T1G3 bladder cancer patients treated with bacillus Calmette-Guerin. Eur Urol, 2012. 62: 118.
https://pubmed.ncbi.nlm.nih.gov/22101115/
180.Mungan, M.U., et al. Risk factors for mucosal prostatic urethral involvement in superficial transitional cell carcinoma of the bladder. Eur Urol, 2005. 48: 760.
https://pubmed.ncbi.nlm.nih.gov/16005563/
181.Brant, A., et al. Prognostic implications of prostatic urethral involvement in non-muscle-invasive bladder cancer. World J Urol, 2019.
https://pubmed.ncbi.nlm.nih.gov/30850856/
182.Huguet, J., et al. Cystectomy in patients with high risk superficial bladder tumors who fail intravesical BCG therapy: pre-cystectomy prostate involvement as a prognostic factor. Eur Urol, 2005. 48: 53.
https://pubmed.ncbi.nlm.nih.gov/15967252/
183.Kausch, I., et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol, 2010. 57: 595.
https://pubmed.ncbi.nlm.nih.gov/20004052/
184.Mowatt, G., et al. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis. Int J Technol Assess Health Care, 2011. 27: 3.
https://pubmed.ncbi.nlm.nih.gov/21262078/
185.Neuzillet, Y., et al. Assessment of diagnostic gain with hexaminolevulinate (HAL) in the setting of newly diagnosed non-muscle-invasive bladder cancer with positive results on urine cytology. Urol Oncol, 2014. 32: 1135.
https://pubmed.ncbi.nlm.nih.gov/25023786/
186.Draga, R.O., et al. Photodynamic diagnosis (5-aminolevulinic acid) of transitional cell carcinoma after bacillus Calmette-Guerin immunotherapy and mitomycin C intravesical therapy. Eur Urol, 2010. 57: 655.
https://pubmed.ncbi.nlm.nih.gov/19819064/
187.Ray, E.R., et al. Hexylaminolaevulinate fluorescence cystoscopy in patients previously treated with intravesical bacille Calmette-Guerin. BJU Int, 2010. 105: 789.
https://pubmed.ncbi.nlm.nih.gov/19832725/
188.Chou, R., et al. Comparative Effectiveness of Fluorescent Versus White Light Cystoscopy for Initial Diagnosis or Surveillance of Bladder Cancer on Clinical Outcomes: Systematic Review and Meta-Analysis. J Urol, 2017. 197: 548.
https://pubmed.ncbi.nlm.nih.gov/27780784/
189.Veeratterapillay, R., et al. Time to Turn on the Blue Lights: A Systematic Review and Meta-analysis of Photodynamic Diagnosis for Bladder Cancer. Eur Urol Open Sci, 2021. 31: 17.
https://pubmed.ncbi.nlm.nih.gov/34467237/
190.Maisch, P., et al. Blue vs white light for transurethral resection of non-muscle-invasive bladder cancer: an abridged Cochrane Review. BJU Int, 2022. 6: 730.
https://pubmed.ncbi.nlm.nih.gov/35238145/
191.Heer, R., et al. A Randomized Trial of PHOTOdynamic Surgery in Non–Muscle-Invasive Bladder Cancer. NEJM Evidence, 2022. 1: 10.
https://doi.org/10.1056/EVIDoa2200092
192.Liedberg, F., et al. Re: Rakesh Heer, Rebecca Lewis, Thenmalar Vadiveloo, et al. A Randomized Trial of PHOTOdynamic Surgery in Non-muscle-invasive Bladder Cancer. NEJM Evid. In press.
https://doi.org/10.1056/EVIDoa2200092. Eur Urol Open Sci, 2022. 46: 53.
https://pubmed.ncbi.nlm.nih.gov/36325368/
193.Stenzl, A., et al. High-quality Transurethral Resection of Bladder Tumour Needs Additional Forms of Tumour Delineation. Eur Urol, 2022.
https://pubmed.ncbi.nlm.nih.gov/36473782/
194.Dahm, P., et al. Photodynamic Diagnosis-Assisted Transurethral Resection-Lights Out? NEJM Evidence, 2022. 1: 10.
https://doi.org/10.1056/EVIDe2200194
195.Zheng, C., et al. Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int, 2012. 110: E680.
https://pubmed.ncbi.nlm.nih.gov/22985502/
196.Drejer, D., et al. Clinical relevance of narrow-band imaging in flexible cystoscopy: the DaBlaCa-7 study. Scand J Urol, 2017. 51: 120.
https://pubmed.ncbi.nlm.nih.gov/28266904/
197.Ye, Z., et al. A comparison of NBI and WLI cystoscopy in detecting non-muscle-invasive bladder cancer: A prospective, randomized and multi-center study. Sci Rep, 2015. 5: 10905.
https://pubmed.ncbi.nlm.nih.gov/26046790/
198.Kim, S.B., et al. Detection and recurrence rate of transurethral resection of bladder tumors by narrow-band imaging: Prospective, randomized comparison with white light cystoscopy. Investig Clin Urol, 2018. 59: 98.
https://pubmed.ncbi.nlm.nih.gov/29520385/
199.Naito, S., et al. The Clinical Research Office of the Endourological Society (CROES) Multicentre Randomised Trial of Narrow Band Imaging-Assisted Transurethral Resection of Bladder Tumour (TURBT) Versus Conventional White Light Imaging-Assisted TURBT in Primary Non-Muscle-invasive Bladder Cancer Patients: Trial Protocol and 1-year Results. Eur Urol, 2016. 70: 506.
https://pubmed.ncbi.nlm.nih.gov/27117749/
200.Russo, G.I., et al. Performance of Narrow Band Imaging (NBI) and Photodynamic Diagnosis (PDD) Fluorescence Imaging Compared to White Light Cystoscopy (WLC) in Detecting Non-Muscle Invasive Bladder Cancer: A Systematic Review and Lesion-Level Diagnostic Meta-Analysis. Cancers (Basel), 2021. 17: 4378.
https://pubmed.ncbi.nlm.nih.gov/34503188/
201.Li, H., et al. Novel Visualization Methods Assisted Transurethral Resection for Bladder Cancer: An Updated Survival-Based Systematic Review and Meta-Analysis. Front Oncol, 2021. 11: 644341.
https://pubmed.ncbi.nlm.nih.gov/34327134/
202.Sari Motlagh, R., et al. Impact of enhanced optical techniques at time of transurethral resection of bladder tumour, with or without single immediate intravesical chemotherapy, on recurrence rate of non-muscle-invasive bladder cancer: a systematic review and network meta-analysis of randomized trials. BJU Int, 2021. 128: 280.
https://pubmed.ncbi.nlm.nih.gov/33683778/
203.Howard, J.M., et al. Enhanced Endoscopy with IMAGE1 S CHROMA Improves Detection of Nonmuscle Invasive Bladder Cancer During Transurethral Resection. J Endourol, 2021. 35: 647.
https://pubmed.ncbi.nlm.nih.gov/33176470/
204.Mulawkar, P., et al. Evaluation of Spectra A and B Modes in Diagnosis of Suspicious Bladder Lesions. J Endourol, 2021. 35: 1184.
https://pubmed.ncbi.nlm.nih.gov/33446044/
205.de la Rosette, J., et al. Conventional white light imaging-assisted transurethral resection of bladder tumour (TURBT) versus IMAGE1S-assisted TURBT in non-muscle-invasive bladder cancer patients: trial protocol and 18 months results. World J Urol, 2022. 40: 727.
https://pubmed.ncbi.nlm.nih.gov/34741631/
206.Liem, E., et al. Validation of Confocal Laser Endomicroscopy Features of Bladder Cancer: The Next Step Towards Real-time Histologic Grading. Eur Urol Focus, 2020. 6: 81.
https://pubmed.ncbi.nlm.nih.gov/30033066/
207.Cumberbatch, M.G.K., et al. Repeat Transurethral Resection in Non-muscle-invasive Bladder Cancer: A Systematic Review. Eur Urol, 2018. 73: 925.
https://pubmed.ncbi.nlm.nih.gov/29523366/
208.Naselli, A., et al. Role of Restaging Transurethral Resection for T1 Non-muscle invasive Bladder Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2018. 4: 558.
https://pubmed.ncbi.nlm.nih.gov/28753839/
209.Elsawy, A.A., et al. Diagnostic performance and predictive capacity of early urine cytology after transurethral resection of nonmuscle invasive bladder cancer: A prospective study. Urol Oncol, 2020. 38: 935.e1.
https://pubmed.ncbi.nlm.nih.gov/32654947/
210.Elsawy, A.A., et al. Can repeat biopsy be skipped after initial complete resection of T1 bladder cancer? The role of a novel urinary mRNA biomarker. Urol Oncol, 2021. 39: 437.e11.
https://pubmed.ncbi.nlm.nih.gov/33785220/
211.Grimm, M.O., et al. Effect of routine repeat transurethral resection for superficial bladder cancer: a long-term observational study. J Urol, 2003. 170: 433.
https://pubmed.ncbi.nlm.nih.gov/12853793/
212.Eroglu, A., et al. The prognostic value of routine second transurethral resection in patients with newly diagnosed stage pT1 non-muscle-invasive bladder cancer: results from randomized 10-year extension trial. Int J Clin Oncol, 2020. 25: 698.
https://pubmed.ncbi.nlm.nih.gov/31760524/
213.Gordon, P.C., et al. Long-term Outcomes from Re-resection for High-risk Non-muscle-invasive Bladder Cancer: A Potential to Rationalize Use. Eur Urol Focus, 2019. 5: 650.
https://pubmed.ncbi.nlm.nih.gov/29089252/
214.Hashine, K., et al. Results of second transurethral resection for high-grade T1 bladder cancer. Urol Ann, 2016. 8: 10.
https://pubmed.ncbi.nlm.nih.gov/26834394/
215.Dalbagni, G., et al. Clinical outcome in a contemporary series of restaged patients with clinical T1 bladder cancer. Eur Urol, 2009. 56: 903.
https://pubmed.ncbi.nlm.nih.gov/19632765/
216.Bishr, M., et al. Tumour stage on re-staging transurethral resection predicts recurrence and progression-free survival of patients with high-risk non-muscle invasive bladder cancer. Can Urol Assoc J, 2014. 8: E306.
https://pubmed.ncbi.nlm.nih.gov/24940455/
217.Palou, J., et al. Recurrence, progression and cancer-specific mortality according to stage at re-TUR in T1G3 bladder cancer patients treated with BCG: not as bad as previously thought. World J Urol, 2018. 36: 1621.
https://pubmed.ncbi.nlm.nih.gov/29721611/
218.Gontero, P., et al. The impact of re-transurethral resection on clinical outcomes in a large multicentre cohort of patients with T1 high-grade/Grade 3 bladder cancer treated with bacille Calmette-Guerin. BJU Int, 2016. 118: 44.
https://pubmed.ncbi.nlm.nih.gov/26469362/
219.Baltaci, S., et al. Significance of the interval between first and second transurethral resection on recurrence and progression rates in patients with high-risk non-muscle-invasive bladder cancer treated with maintenance intravesical Bacillus Calmette-Guerin. BJU Int, 2015. 116: 721.
https://pubmed.ncbi.nlm.nih.gov/25715815/
220.Paner, G.P., et al. Challenges in Pathologic Staging of Bladder Cancer: Proposals for Fresh Approaches of Assessing Pathologic Stage in Light of Recent Studies and Observations Pertaining to Bladder Histoanatomic Variances. Adv Anat Pathol, 2017. 24: 113.
https://pubmed.ncbi.nlm.nih.gov/28398951/
221.ICCR. Urinary Tract Carcinoma Biopsy and Transurethral Resection Specimen (TNM8). 2019. [Access date: March 2022]
http://www.iccr-cancer.org/datasets/published-datasets/urinary-male-genital/ut-biopsy-and-tr
222.Sylvester, R.J., et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol, 2006. 49: 466.
https://pubmed.ncbi.nlm.nih.gov/16442208/
223.Lammers, R.J., et al. Prediction model for recurrence probabilities after intravesical chemotherapy in patients with intermediate-risk non-muscle-invasive bladder cancer, including external validation. World J Urol, 2016. 34: 173.
https://pubmed.ncbi.nlm.nih.gov/26025189/
224.Fernandez-Gomez, J., et al. Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with bacillus Calmette-Guerin: the CUETO scoring model. J Urol, 2009. 182: 2195.
https://pubmed.ncbi.nlm.nih.gov/19758621/
225.Fernandez-Gomez, J., et al. The EORTC tables overestimate the risk of recurrence and progression in patients with non-muscle-invasive bladder cancer treated with bacillus Calmette-Guerin: external validation of the EORTC risk tables. Eur Urol, 2011. 60: 423.
https://pubmed.ncbi.nlm.nih.gov/21621906/
226.van Rhijn, B.W., et al. Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer. Eur Urol, 2010. 58: 433.
https://pubmed.ncbi.nlm.nih.gov/20646825/
227.Cambier, S., et al. EORTC Nomograms and Risk Groups for Predicting Recurrence, Progression, and Disease-specific and Overall Survival in Non-Muscle-invasive Stage Ta-T1 Urothelial Bladder Cancer Patients Treated with 1-3 Years of Maintenance Bacillus Calmette-Guerin. Eur Urol, 2016. 69: 60.
https://pubmed.ncbi.nlm.nih.gov/26210894/
228.Gontero, P., et al. Prognostic factors and risk groups in T1G3 non-muscle-invasive bladder cancer patients initially treated with Bacillus Calmette-Guerin: results of a retrospective multicenter study of 2451 patients. Eur Urol, 2015. 67: 74.
https://pubmed.ncbi.nlm.nih.gov/25043942/
229.Voskuilen, C.S., et al. Urothelial Carcinoma in Bladder Diverticula: A Multicenter Analysis of Characteristics and Clinical Outcomes. Eur Urol Focus, 2020. 6: 1226.
https://pubmed.ncbi.nlm.nih.gov/30559065/
230.Palou, J., et al. Recurrence at three months and high-grade recurrence as prognostic factor of progression in multivariate analysis of T1G2 bladder tumors. Urology, 2009. 73: 1313.
https://pubmed.ncbi.nlm.nih.gov/19362341/
231.Alkhateeb, S.S., et al. Long-term prognostic value of the combination of EORTC risk group calculator and molecular markers in non-muscle-invasive bladder cancer patients treated with intravesical Bacille Calmette-Guerin. Urol Ann, 2011. 3: 119.
https://pubmed.ncbi.nlm.nih.gov/21976923/
232.Lamm, D.L. Carcinoma in situ. Urol Clin North Am, 1992. 19: 499.
https://pubmed.ncbi.nlm.nih.gov/1636234/
233.Losa, A., et al. Low dose bacillus Calmette-Guerin for carcinoma in situ of the bladder: long-term results. J Urol, 2000. 163: 68.
https://pubmed.ncbi.nlm.nih.gov/10604316/
234.Griffiths, T.R., et al. Treatment of carcinoma in situ with intravesical bacillus Calmette-Guerin without maintenance. J Urol, 2002. 167: 2408.
https://pubmed.ncbi.nlm.nih.gov/11992047/
235.Takenaka, A., et al. Clinical outcomes of bacillus Calmette-Guerin instillation therapy for carcinoma in situ of urinary bladder. Int J Urol, 2008. 15: 309.
https://pubmed.ncbi.nlm.nih.gov/18380817/
236.Solsona, E., et al. The 3-month clinical response to intravesical therapy as a predictive factor for progression in patients with high risk superficial bladder cancer. J Urol, 2000. 164: 685.
https://pubmed.ncbi.nlm.nih.gov/10953125/
237.van Gils-Gielen, R.J., et al. Risk factors in carcinoma in situ of the urinary bladder. Dutch South East Cooperative Urological Group. Urology, 1995. 45: 581.
https://pubmed.ncbi.nlm.nih.gov/7716838/
238.Lobo, N., et al. Updated European Association of Urology (EAU) Prognostic Factor Risk Groups Overestimate the Risk of Progression in Patients with Non-muscle-invasive Bladder Cancer Treated with Bacillus Calmette-Guerin. Eur Urol Oncol, 2022. 5: 84.
https://pubmed.ncbi.nlm.nih.gov/34920986/
239.Lammers, R.J., et al. Smoking status is a risk factor for recurrence after transurethral resection of non-muscle-invasive bladder cancer. Eur Urol, 2011. 60: 713.
https://pubmed.ncbi.nlm.nih.gov/21794974/
240.Rink, M., et al. Smoking reduces the efficacy of intravesical bacillus Calmette-Guerin immunotherapy in non-muscle-invasive bladder cancer. Eur Urol, 2012. 62: 1204.
https://pubmed.ncbi.nlm.nih.gov/22980442/
241.Rink, M., et al. Impact of smoking on outcomes of patients with a history of recurrent nonmuscle invasive bladder cancer. J Urol, 2012. 188: 2120.
https://pubmed.ncbi.nlm.nih.gov/23083868/
242.Crivelli, J.J., et al. Effect of smoking on outcomes of urothelial carcinoma: a systematic review of the literature. Eur Urol, 2014. 65: 742.
https://pubmed.ncbi.nlm.nih.gov/23810104/
243.Muller, J., et al. Trends in the risk of second primary cancer among bladder cancer survivors: a population-based cohort of 10 047 patients. BJU Int, 2016. 118: 53.
https://pubmed.ncbi.nlm.nih.gov/26469096/
244.Xu, Y., et al. Comparing the treatment outcomes of potassium-titanyl-phosphate laser vaporization and transurethral electroresection for primary nonmuscle-invasive bladder cancer: A prospective, randomized study. Lasers Surg Med, 2015. 47: 306.
https://pubmed.ncbi.nlm.nih.gov/25864416/
245.Planelles Gomez, J., et al. Holmium YAG Photocoagulation: Safe and Economical Alternative to Transurethral Resection in Small Nonmuscle-Invasive Bladder Tumors. J Endourol, 2017. 31: 674.
https://pubmed.ncbi.nlm.nih.gov/28462594/
246.Pedersen, G.L., et al. Outpatient Photodynamic Diagnosis-guided Laser Destruction of Bladder Tumors Is as Good as Conventional Inpatient Photodynamic Diagnosis-guided Transurethral Tumor Resection in Patients with Recurrent Intermediate-risk Low-grade Ta Bladder Tumors. A Prospective Randomized Noninferiority Clinical Trial. Eur Urol, 2022.
https://pubmed.ncbi.nlm.nih.gov/36058804/
247.Holmang, S., et al. Recurrence and progression in low grade papillary urothelial tumors. J Urol, 1999. 162: 702.
https://pubmed.ncbi.nlm.nih.gov/10458347/
248.Holmang, S., et al. Stage Ta-T1 bladder cancer: the relationship between findings at first followup cystoscopy and subsequent recurrence and progression. J Urol, 2002. 167: 1634.
https://pubmed.ncbi.nlm.nih.gov/11912378/
249.Mariappan, P., et al. Pattern of recurrence changes in noninvasive bladder tumors observed during 2 decades. J Urol, 2007. 177: 867.
https://pubmed.ncbi.nlm.nih.gov/17296362/
250.Holmang, S., et al. Stage progression in Ta papillary urothelial tumors: relationship to grade, immunohistochemical expression of tumor markers, mitotic frequency and DNA ploidy. J Urol, 2001. 165: 1124.
https://pubmed.ncbi.nlm.nih.gov/11257652/
251.Mariappan, P., et al. A surveillance schedule for G1Ta bladder cancer allowing efficient use of check cystoscopy and safe discharge at 5 years based on a 25-year prospective database. J Urol, 2005. 173: 1108.
https://pubmed.ncbi.nlm.nih.gov/15758711/
252.Millan-Rodriguez, F., et al. Primary superficial bladder cancer risk groups according to progression, mortality and recurrence. J Urol. 2000. 3 Pt 1: 680.
https://pubmed.ncbi.nlm.nih.gov/10954628/
253.Soloway, M.S., et al. Expectant management of small, recurrent, noninvasive papillary bladder tumors. J Urol, 2003. 170: 438.
https://pubmed.ncbi.nlm.nih.gov/12853794/
254.Miyake, M., et al. Active surveillance for nonmuscle invasive bladder cancer. Investig Clin Urol, 2016. 57 Suppl 1: S4.
https://pubmed.ncbi.nlm.nih.gov/27326406/
255.Marcq, G., et al. Active surveillance for non-muscle invasive bladder cancer. Transl Androl Urol, 2019. 8: 54.
https://pubmed.ncbi.nlm.nih.gov/30976569/
256.Contieri, R., et al. Long-term Follow-up and Factors Associated with Active Surveillance Failure for Patients with Non-muscle-invasive Bladder Cancer: The Bladder Cancer Italian Active Surveillance (BIAS) Experience. Eur Urol Oncol, 2022. 5: 251.
https://pubmed.ncbi.nlm.nih.gov/34059485/
257.Hurle, R., et al. Active surveillance for low-risk non-muscle-invasive bladder cancer: mid-term results from the Bladder cancer Italian Active Surveillance (BIAS) project. BJU Int, 2016. 118: 935.
https://pubmed.ncbi.nlm.nih.gov/27207387/
258.Li, M., et al. Continuous bladder irrigation after transurethral resection of non-muscle invasive bladder cancer for prevention of tumour recurrence: a systematic review. ANZ J Surg, 2021. 91: 2592.
https://pubmed.ncbi.nlm.nih.gov/33890701/
259.Mahran, A., et al. Bladder irrigation after transurethral resection of superficial bladder cancer: a systematic review of the literature. Can J Urol, 2018. 25: 9579.
https://pubmed.ncbi.nlm.nih.gov/30553282/
260.Zhou, Z., et al. Meta-analysis of efficacy and safety of continuous saline bladder irrigation compared with intravesical chemotherapy after transurethral resection of bladder tumors. World J Urol, 2019. 37: 1075.
https://pubmed.ncbi.nlm.nih.gov/30612154/
261.Soloway, M.S., et al. Urothelial susceptibility to tumor cell implantation: influence of cauterization. Cancer, 1980. 46: 1158.
https://pubmed.ncbi.nlm.nih.gov/7214299/
262.Pan, J.S., et al. Inhibition of implantation of murine bladder tumor by thiotepa in cauterized bladder. J Urol, 1989. 142: 1589.
https://pubmed.ncbi.nlm.nih.gov/2511340/
263.Brocks, C.P., et al. Inhibition of tumor implantation by intravesical gemcitabine in a murine model of superficial bladder cancer. J Urol, 2005. 174: 1115.
https://pubmed.ncbi.nlm.nih.gov/16094076/
264.Oosterlinck, W., et al. A prospective European Organization for Research and Treatment of Cancer Genitourinary Group randomized trial comparing transurethral resection followed by a single intravesical instillation of epirubicin or water in single stage Ta, T1 papillary carcinoma of the bladder. J Urol, 1993. 149: 749.
https://pubmed.ncbi.nlm.nih.gov/8455236/
265.Sylvester, R.J., et al. Systematic Review and Individual Patient Data Meta-analysis of Randomized Trials Comparing a Single Immediate Instillation of Chemotherapy After Transurethral Resection with Transurethral Resection Alone in Patients with Stage pTa-pT1 Urothelial Carcinoma of the Bladder: Which Patients Benefit from the Instillation? Eur Urol, 2016. 69: 231.
https://pubmed.ncbi.nlm.nih.gov/26091833/
266.Sylvester, R.J., et al. A single immediate postoperative instillation of chemotherapy decreases the risk of recurrence in patients with stage Ta T1 bladder cancer: a meta-analysis of published results of randomized clinical trials. J Urol, 2004. 171: 2186.
https://pubmed.ncbi.nlm.nih.gov/15126782/
267.Abern, M.R., et al. Perioperative intravesical chemotherapy in non-muscle-invasive bladder cancer: a systematic review and meta-analysis. J Natl Compr Canc Netw, 2013. 11: 477.
https://pubmed.ncbi.nlm.nih.gov/23584348/
268.Perlis, N., et al. Immediate post-transurethral resection of bladder tumor intravesical chemotherapy prevents non-muscle-invasive bladder cancer recurrences: an updated meta-analysis on 2548 patients and quality-of-evidence review. Eur Urol, 2013. 64: 421.
https://pubmed.ncbi.nlm.nih.gov/23830475/
269.Messing, E.M., et al. Effect of Intravesical Instillation of Gemcitabine vs Saline Immediately Following Resection of Suspected Low-Grade Non-Muscle-Invasive Bladder Cancer on Tumor Recurrence: SWOG S0337 Randomized Clinical Trial. Jama, 2018. 319: 1880.
https://pubmed.ncbi.nlm.nih.gov/29801011/
270.Bohle, A., et al. Single postoperative instillation of gemcitabine in patients with non-muscle-invasive transitional cell carcinoma of the bladder: a randomised, double-blind, placebo-controlled phase III multicentre study. Eur Urol, 2009. 56: 495.
https://pubmed.ncbi.nlm.nih.gov/19560257/
271.Pode, D., et al. The mechanism of human bladder tumor implantation in an in vitro model. J Urol, 1986. 136: 482.
https://pubmed.ncbi.nlm.nih.gov/3525861/
272.Bohle, A., et al. Inhibition of bladder carcinoma cell adhesion by oligopeptide combinations in vitro and in vivo. J Urol, 2002. 167: 357.
https://pubmed.ncbi.nlm.nih.gov/11743356/
273.Gofrit, O.N., et al. The natural history of bladder carcinoma in situ after initial response to bacillus Calmette-Guerin immunotherapy. Urol Oncol, 2009. 27: 258.
https://pubmed.ncbi.nlm.nih.gov/18440839/
274.Karsh, L., et al. Double-Blind, Randomized, Placebo-controlled Studies Evaluating Apaziquone (E09, Qapzola) Intravesical Instillation Post Transurethral Resection of Bladder Tumors for the Treatment of Low-risk Non-Muscle Invasive Bladder Cancer. Bladder Cancer, 2018. 4: 293.
https://pubmed.ncbi.nlm.nih.gov/30112440/
275.Oddens, J.R., et al. One immediate postoperative instillation of chemotherapy in low risk Ta, T1 bladder cancer patients. Is it always safe? Eur Urol, 2004. 46: 336.
https://pubmed.ncbi.nlm.nih.gov/15306104/
276.Elmamoun, M.H., et al. Destruction of the bladder by single dose Mitomycin C for low-stage transitional cell carcinoma (TCC)--avoidance, recognition, management and consent. BJU Int, 2014. 113: E34.
https://pubmed.ncbi.nlm.nih.gov/24053461/
277.Dunsmore, J., et al. What influences adherence to guidance for postoperative instillation of intravesical chemotherapy to patients with bladder cancer? BJU Int, 2021. 128: 225.
https://pubmed.ncbi.nlm.nih.gov/33450116/
278.Tolley, D.A., et al. The effect of intravesical mitomycin C on recurrence of newly diagnosed superficial bladder cancer: a further report with 7 years of follow up. J Urol, 1996. 155: 1233.
https://pubmed.ncbi.nlm.nih.gov/8632538/
279.Huncharek, M., et al. Impact of intravesical chemotherapy on recurrence rate of recurrent superficial transitional cell carcinoma of the bladder: results of a meta-analysis. Anticancer Res, 2001. 21: 765.
https://pubmed.ncbi.nlm.nih.gov/11299841/
280.Bohle, A., et al. Intravesical bacille Calmette-Guerin versus mitomycin C in superficial bladder cancer: formal meta-analysis of comparative studies on tumor progression. Urology, 2004. 63: 682.
https://pubmed.ncbi.nlm.nih.gov/15072879/
281.Sylvester, R.J., et al. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J Urol, 2002. 168: 1964.
https://pubmed.ncbi.nlm.nih.gov/12394686/
282.Malmstrom, P.U., et al. An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette-Guerin for non-muscle-invasive bladder cancer. Eur Urol, 2009. 56: 247.
https://pubmed.ncbi.nlm.nih.gov/19409692/
283.Sylvester, R.J., et al. Long-term efficacy results of EORTC genito-urinary group randomized phase 3 study 30911 comparing intravesical instillations of epirubicin, bacillus Calmette-Guerin, and bacillus Calmette-Guerin plus isoniazid in patients with intermediate- and high-risk stage Ta T1 urothelial carcinoma of the bladder. Eur Urol, 2010. 57: 766.
https://pubmed.ncbi.nlm.nih.gov/20034729/
284.Shang, P.F., et al. Intravesical Bacillus Calmette-Guerin versus epirubicin for Ta and T1 bladder cancer. Cochrane Database Syst Rev, 2011: CD006885.
https://pubmed.ncbi.nlm.nih.gov/21563157/
285.Bosschieter, J., et al. Value of an Immediate Intravesical Instillation of Mitomycin C in Patients with Non-muscle-invasive Bladder Cancer: A Prospective Multicentre Randomised Study in 2243 patients. Eur Urol, 2018. 73: 226.
https://pubmed.ncbi.nlm.nih.gov/28705539/
286.Bouffioux, C., et al. Intravesical adjuvant chemotherapy for superficial transitional cell bladder carcinoma: results of 2 European Organization for Research and Treatment of Cancer randomized trials with mitomycin C and doxorubicin comparing early versus delayed instillations and short-term versus long-term treatment. European Organization for Research and Treatment of Cancer Genitourinary Group. J Urol, 1995. 153: 934.
https://pubmed.ncbi.nlm.nih.gov/7853578/
287.Kaasinen, E., et al. Factors explaining recurrence in patients undergoing chemoimmunotherapy regimens for frequently recurring superficial bladder carcinoma. Eur Urol, 2002. 42: 167.
https://pubmed.ncbi.nlm.nih.gov/12160589/
288.Sylvester, R.J., et al. The schedule and duration of intravesical chemotherapy in patients with non-muscle-invasive bladder cancer: a systematic review of the published results of randomized clinical trials. Eur Urol, 2008. 53: 709.
https://pubmed.ncbi.nlm.nih.gov/18207317/
289.Bosschieter, J., et al. An immediate, single intravesical instillation of mitomycin C is of benefit in patients with non-muscle-invasive bladder cancer irrespective of prognostic risk groups. Urol Oncol, 2018. 36: 400.e7.
https://pubmed.ncbi.nlm.nih.gov/30064935/
290.Elsawy, A.A., et al. The value of immediate postoperative intravesical epirubicin instillation as an adjunct to standard adjuvant treatment in intermediate and high-risk non-muscle-invasive bladder cancer: A preliminary results of randomized controlled trial. Urol Oncol, 2019. 37: 179 e9.
https://pubmed.ncbi.nlm.nih.gov/30448030/
291.Au, J.L., et al. Methods to improve efficacy of intravesical mitomycin C: results of a randomized phase III trial. J Natl Cancer Inst, 2001. 93: 597.
https://pubmed.ncbi.nlm.nih.gov/11309436/
292.Miyata, Y., et al. Intravesical mitomycin C (MMC) and MMC + cytosine arabinoside for non-muscle-invasive bladder cancer: a randomised clinical trial. BJU Int, 2022. 129: 534.
https://pubmed.ncbi.nlm.nih.gov/34383381/
293.Giesbers, A.A., et al. Recurrence of superficial bladder carcinoma after intravesical instillation of mitomycin-C. Comparison of exposure times. Br J Urol, 1989. 63: 176.
https://pubmed.ncbi.nlm.nih.gov/2495144/
294.Kuroda, M., et al. Effect of prophylactic treatment with intravesical epirubicin on recurrence of superficial bladder cancer—The 6th Trial of the Japanese Urological Cancer Research Group (JUCRG): a randomized trial of intravesical epirubicin at dose of 20mg/40ml, 30mg/40ml, 40mg/40ml. Eur Urol, 2004. 45: 600.
https://pubmed.ncbi.nlm.nih.gov/15082202/
295.Zhao, H., et al. Intravesical Chemohyperthermia vs. Bacillus Calmette-Guerin Instillation for Intermediate- and High-Risk Non-muscle Invasive Bladder Cancer: A Systematic Review and Meta-Analysis. Front Surg, 2021. 8: 775527.
https://pubmed.ncbi.nlm.nih.gov/34888347/
296.Arends, T.J., et al. Combined chemohyperthermia: 10-year single center experience in 160 patients with nonmuscle invasive bladder cancer. J Urol, 2014. 192: 708.
https://pubmed.ncbi.nlm.nih.gov/24704017/
297.Arends, T.J., et al. Results of a Randomised Controlled Trial Comparing Intravesical Chemohyperthermia with Mitomycin C Versus Bacillus Calmette-Guerin for Adjuvant Treatment of Patients with Intermediate- and High-risk Non-Muscle-invasive Bladder Cancer. Eur Urol, 2016.
69: 1046.
https://pubmed.ncbi.nlm.nih.gov/26803476/
298.Tan, W.S., et al. Adjuvant Intravesical Chemohyperthermia Versus Passive Chemotherapy in Patients with Intermediate-risk Non-muscle-invasive Bladder Cancer (HIVEC-II): A Phase 2, Open-label, Randomised Controlled Trial. Eur Urol, 2022.
https://pubmed.ncbi.nlm.nih.gov/35999119/
299.Guerrero-Ramos, F., et al. Recirculating hyperthermic intravesical chemotherapy with mitomycin C (HIVEC) versus BCG in high-risk non-muscle-invasive bladder cancer: results of the HIVEC-HR randomized clinical trial. World J Urol, 2022. 40: 999.
https://pubmed.ncbi.nlm.nih.gov/35037963/
300.Di Stasi, S.M., et al. Sequential BCG and electromotive mitomycin versus BCG alone for high-risk superficial bladder cancer: a randomised controlled trial. Lancet Oncol, 2006. 7: 43.
https://pubmed.ncbi.nlm.nih.gov/16389183/
301.Shelley, M.D., et al. A systematic review of intravesical bacillus Calmette-Guerin plus transurethral resection vs transurethral resection alone in Ta and T1 bladder cancer. BJU Int, 2001. 88: 209.
https://pubmed.ncbi.nlm.nih.gov/11488731/
302.Han, R.F., et al. Can intravesical bacillus Calmette-Guerin reduce recurrence in patients with superficial bladder cancer? A meta-analysis of randomized trials. Urology, 2006. 67: 1216.
https://pubmed.ncbi.nlm.nih.gov/16765182/
303.Shelley, M.D., et al. Intravesical bacillus Calmette-Guerin is superior to mitomycin C in reducing tumour recurrence in high-risk superficial bladder cancer: a meta-analysis of randomized trials. BJU Int, 2004. 93: 485.
https://pubmed.ncbi.nlm.nih.gov/15008714/
304.Bohle, A., et al. Intravesical bacillus Calmette-Guerin versus mitomycin C for superficial bladder cancer: a formal meta-analysis of comparative studies on recurrence and toxicity. J Urol, 2003. 169: 90.
https://pubmed.ncbi.nlm.nih.gov/12478111/
305.Duchek, M., et al. Bacillus Calmette-Guerin is superior to a combination of epirubicin and interferon-alpha2b in the intravesical treatment of patients with stage T1 urinary bladder cancer. A prospective, randomized, Nordic study. Eur Urol, 2010. 57: 25.
https://pubmed.ncbi.nlm.nih.gov/19819617/
306.Jarvinen, R., et al. Long-term efficacy of maintenance bacillus Calmette-Guerin versus maintenance mitomycin C instillation therapy in frequently recurrent TaT1 tumours without carcinoma in situ: a subgroup analysis of the prospective, randomised FinnBladder I study with a 20-year follow-up. Eur Urol, 2009. 56: 260.
https://pubmed.ncbi.nlm.nih.gov/19395154/
307.Schmidt, S., et al. Intravesical Bacillus Calmette-Guérin versus mitomycin C for Ta and T1 bladder cancer. Cochrane Database Syst Rev, 2020. 1: CD011935.
https://pubmed.ncbi.nlm.nih.gov/31912907/
308.Huncharek, M., et al. The influence of intravesical therapy on progression of superficial transitional cell carcinoma of the bladder: a metaanalytic comparison of chemotherapy versus bacilli Calmette-Guerin immunotherapy. Am J Clin Oncol, 2004. 27: 522.
https://pubmed.ncbi.nlm.nih.gov/15596924/
309.Oddens, J.R., et al. The effect of age on the efficacy of maintenance bacillus calmette-guerin relative to maintenance epirubicin in patients with stage ta t1 urothelial bladder cancer: results from EORTC genito-urinary group study 30911. Eur Urol, 2014. 66: 694.
https://pubmed.ncbi.nlm.nih.gov/24948466/
310.Miyake, M., et al. Outcomes of subsequent non-muscle-invasive bladder cancer treated with intravesical Bacillus Calmette-Guerin after radical nephroureterectomy for upper urinary tract urothelial carcinoma. BJU Int, 2018. 121: 764.
https://pubmed.ncbi.nlm.nih.gov/29281857/
311.Rentsch, C.A., et al. Bacillus calmette-guerin strain differences have an impact on clinical outcome in bladder cancer immunotherapy. Eur Urol, 2014. 66: 677.
https://pubmed.ncbi.nlm.nih.gov/24674149/
312.Sengiku, A., et al. A prospective comparative study of intravesical bacillus Calmette-Guerin therapy with the Tokyo or Connaught strain for nonmuscle invasive bladder cancer. J Urol, 2013. 190: 50.
https://pubmed.ncbi.nlm.nih.gov/23376145/
313.Boehm, B.E., et al. Efficacy of bacillus Calmette-Guerin Strains for Treatment of Nonmuscle Invasive Bladder Cancer: A Systematic Review and Network Meta-Analysis. J Urol, 2017. 198: 503.
https://pubmed.ncbi.nlm.nih.gov/28286068/
314.Unda-Urzaiz, M., et al. Safety and efficacy of various strains of bacille Calmette-Guerin in the treatment of bladder tumours in standard clinical practice. Actas Urol Esp, 2018. 42: 238.
https://pubmed.ncbi.nlm.nih.gov/29295749/
315.Steinberg, R.L., et al. Bacillus Calmette-Guerin strain may not effect recurrence-free survival when used intravesically with interferon-alpha2b for non-muscle-invasive bladder cancer. Urol Oncol, 2017. 35: 201.
https://pubmed.ncbi.nlm.nih.gov/28041998/
316.van der Meijden, A.P., et al. Maintenance Bacillus Calmette-Guerin for Ta T1 bladder tumors is not associated with increased toxicity: results from a European Organisation for Research and Treatment of Cancer Genito-Urinary Group Phase III Trial. Eur Urol, 2003. 44: 429.
https://pubmed.ncbi.nlm.nih.gov/14499676/
317.Larsen, E.S., et al. The epidemiology of bacille Calmette-Guérin infections after bladder instillation from 2002 through 2017: a nationwide retrospective cohort study. BJU Int, 2019. 124: 910.
https://pubmed.ncbi.nlm.nih.gov/31054198/
318.Brausi, M., et al. Side effects of Bacillus Calmette-Guerin (BCG) in the treatment of intermediate- and high-risk Ta, T1 papillary carcinoma of the bladder: results of the EORTC genito-urinary cancers group randomised phase 3 study comparing one-third dose with full dose and 1 year with 3 years of maintenance BCG. Eur Urol, 2014. 65: 69.
https://pubmed.ncbi.nlm.nih.gov/23910233/
319.Oddens, J.R., et al. Increasing age is not associated with toxicity leading to discontinuation of treatment in patients with urothelial non-muscle-invasive bladder cancer randomised to receive 3 years of maintenance bacille Calmette-Guerin: results from European Organisation for Research and Treatment of Cancer Genito-Urinary Group study 30911. BJU Int, 2016. 118: 423.
https://pubmed.ncbi.nlm.nih.gov/26945890/
320.Danielsson, G., et al. Bladder health in patients treated with BCG instillations for T1G2-G3 bladder cancer - a follow-up five years after the start of treatment. Scand J Urol, 2018. 52: 377.
https://pubmed.ncbi.nlm.nih.gov/30616479/
321.Herr, H.W. Intravesical bacillus Calmette-Guerin outcomes in patients with bladder cancer and asymptomatic bacteriuria. J Urol, 2012. 187: 435.
https://pubmed.ncbi.nlm.nih.gov/22177154/
322.Colombel, M., et al. The effect of ofloxacin on bacillus calmette-guerin induced toxicity in patients with superficial bladder cancer: results of a randomized, prospective, double-blind, placebo controlled, multicenter study. J Urol, 2006. 176: 935.
https://pubmed.ncbi.nlm.nih.gov/16890660/
323.Damiano, R., et al. Short-term administration of prulifloxacin in patients with nonmuscle-invasive bladder cancer: an effective option for the prevention of bacillus Calmette-Guerin-induced toxicity? BJU Int, 2009. 104: 633.
https://pubmed.ncbi.nlm.nih.gov/19298412/
324.Numakura, K., et al. Effect of Levofloxacin on the Efficacy and Adverse Events in Intravesical Bacillus Calmette-Guerin Treatment for Bladder Cancer: Results of a Randomized, Prospective, Multicenter Study. Eur Urol Focus, 2022. 6: 1666.
https://pubmed.ncbi.nlm.nih.gov/35717522/
325.Lamm, D.L., et al. Incidence and treatment of complications of bacillus Calmette-Guerin intravesical therapy in superficial bladder cancer. J Urol, 1992. 147: 596.
https://pubmed.ncbi.nlm.nih.gov/1538436/
326.Palou, J., et al. Intravesical bacillus Calmette-Guerin for the treatment of superficial bladder cancer in renal transplant patients. Transplantation, 2003. 76: 1514.
https://pubmed.ncbi.nlm.nih.gov/14657696/
327.Yossepowitch, O., et al. Safety and efficacy of intravesical bacillus Calmette-Guerin instillations in steroid treated and immunocompromised patients. J Urol, 2006. 176: 482.
https://pubmed.ncbi.nlm.nih.gov/16813873/
328.Roumeguere, T., et al. Bacillus Calmette-Guerin therapy in non-muscle-invasive bladder carcinoma after renal transplantation for end-stage aristolochic acid nephropathy. Transpl Int, 2015. 28: 199.
https://pubmed.ncbi.nlm.nih.gov/25377421/
329.Rodriguez, F., et al. [Practical guideline for the management of adverse events associated with BCG installations]. Arch Esp Urol, 2008. 61: 591.
https://pubmed.ncbi.nlm.nih.gov/18709813/
330.Witjes JA, P.J., Soloway M, et al. Clinical practice recommendations for the prevention and management of intravesical therapy-associated adverse events. Eur Urol Suppl, 2008. 7: 667.
https://www.sciencedirect.com/science/article/abs/pii/S1569905608001103
331.Palou, J., et al. Intravesical treatment of severe bacillus Calmette-Guerin cystitis. Int Urol Nephrol, 2001. 33: 485.
https://pubmed.ncbi.nlm.nih.gov/12230277/
332.Falkensammer, C., et al. Late occurrence of bilateral tuberculous-like epididymo-orchitis after intravesical bacille Calmette-Guerin therapy for superficial bladder carcinoma. Urology, 2005. 65: 175.
https://pubmed.ncbi.nlm.nih.gov/15667898/
333.Tinazzi, E., et al. Reactive arthritis following BCG immunotherapy for urinary bladder carcinoma: a systematic review. Rheumatol Int, 2006. 26: 481.
https://pubmed.ncbi.nlm.nih.gov/16220289/
334.Bonkat, G., et al. EAU Guidelines on Urological Infections 2023. Edn. presented at the 38th Annual Congress Milan. European Association of Eurology Guidelines Office Arnhem, The Netherlands.
https://uroweb.org/guidelines/urological-infections
335.Morales, A., et al. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol, 1976. 116: 180.
https://pubmed.ncbi.nlm.nih.gov/820877/
336.Lamm, D.L., et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study. J Urol, 2000. 163: 1124.
https://pubmed.ncbi.nlm.nih.gov/10737480/
337.Grimm, M.O., et al. Treatment of High-grade Non-muscle-invasive Bladder Carcinoma by Standard Number and Dose of BCG Instillations Versus Reduced Number and Standard Dose of BCG Instillations: Results of the European Association of Urology Research Foundation Randomised Phase III Clinical Trial “NIMBUS”. Eur Urol, 2020. 78: 690.
https://pubmed.ncbi.nlm.nih.gov/32446864/
338.Martinez-Pineiro, L., et al. Maintenance Therapy with 3-monthly Bacillus Calmette-Guerin for 3 Years is Not Superior to Standard Induction Therapy in High-risk Non-muscle-invasive Urothelial Bladder Carcinoma: Final Results of Randomised CUETO Study 98013. Eur Urol, 2015. 68: 256.
https://pubmed.ncbi.nlm.nih.gov/25794457/
339.Oddens, J., et al. Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guerin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance. Eur Urol, 2013. 63: 462.
https://pubmed.ncbi.nlm.nih.gov/23141049/
340.Martinez-Pineiro, J.A., et al. Long-term follow-up of a randomized prospective trial comparing a standard 81 mg dose of intravesical bacille Calmette-Guerin with a reduced dose of 27 mg in superficial bladder cancer. BJU Int, 2002. 89: 671.
https://pubmed.ncbi.nlm.nih.gov/11966623/
341.Martinez-Pineiro, J.A., et al. Has a 3-fold decreased dose of bacillus Calmette-Guerin the same efficacy against recurrences and progression of T1G3 and Tis bladder tumors than the standard dose? Results of a prospective randomized trial. J Urol, 2005. 174: 1242.
https://pubmed.ncbi.nlm.nih.gov/16145378/
342.Ojea, A., et al. A multicentre, randomised prospective trial comparing three intravesical adjuvant therapies for intermediate-risk superficial bladder cancer: low-dose bacillus Calmette-Guerin
(27 mg) versus very low-dose bacillus Calmette-Guerin (13.5 mg) versus mitomycin C. Eur Urol, 2007. 52: 1398.
https://pubmed.ncbi.nlm.nih.gov/17485161/
343.Choi, S.Y., et al. Low-dose versus standard-dose bacille Calmette-Guerin for non-muscle-invasive bladder cancer: Systematic review and meta-analysis of randomized controlled trials. Investig Clin Urol, 2022. 63: 140.
https://pubmed.ncbi.nlm.nih.gov/35244987/
344.Solsona, E., et al. Sequential combination of mitomycin C plus bacillus Calmette-Guerin (BCG) is more effective but more toxic than BCG alone in patients with non-muscle-invasive bladder cancer in intermediate- and high-risk patients: final outcome of CUETO 93009, a randomized prospective trial. Eur Urol, 2015. 67: 508.
https://pubmed.ncbi.nlm.nih.gov/25301758/
345.Cui, J., et al. Combination of Intravesical Chemotherapy and Bacillus Calmette-Guerin Versus Bacillus Calmette-Guerin Monotherapy in Intermediate- and High-risk Nonmuscle Invasive Bladder Cancer: A Systematic Review and Meta-analysis. Medicine (Baltimore), 2016. 95: e2572.
https://pubmed.ncbi.nlm.nih.gov/26817914/
346.Huang, D., et al. Combination of Intravesical Bacille Calmette-Guerin and Chemotherapy vs. Bacille Calmette-Guerin Alone in Non-muscle Invasive Bladder Cancer: A Meta-Analysis. Front Oncol, 2019. 9: 121.
https://pubmed.ncbi.nlm.nih.gov/30881921/
347.Shepherd, A.R., et al. Intravesical Bacillus Calmette-Guerin with interferon-alpha versus intravesical Bacillus Calmette-Guerin for treating non-muscle-invasive bladder cancer. Cochrane Database Syst Rev, 2017. 3: CD012112.
https://pubmed.ncbi.nlm.nih.gov/28268259/
348.Jarvinen, R., et al. Long-term outcome of patients with frequently recurrent non-muscle-invasive bladder carcinoma treated with one perioperative plus four weekly instillations of mitomycin C followed by monthly bacillus Calmette-Guerin (BCG) or alternating BCG and interferon-alpha2b instillations: prospective randomised FinnBladder-4 study. Eur Urol, 2015. 68: 611.
https://pubmed.ncbi.nlm.nih.gov/25748117/
349.Marttila, T., et al. Intravesical Bacillus Calmette-Guerin Versus Combination of Epirubicin and Interferon-alpha2a in Reducing Recurrence of Non-Muscle-invasive Bladder Carcinoma: FinnBladder-6 Study. Eur Urol, 2016. 70: 341.
https://pubmed.ncbi.nlm.nih.gov/27085624/
350.Delto, J. Preclinical analyses of intravesical chemotherapy for prevention of bladder cancer. Oncotarget, 2013.
https://pubmed.ncbi.nlm.nih.gov/23563166/
351.Steinberg, R.L., et al. Sequential Intravesical Gemcitabine and Docetaxel for the Salvage Treatment of Non-Muscle Invasive Bladder Cancer. Bladder Cancer, 2015. 1: 65.
https://pubmed.ncbi.nlm.nih.gov/30561441/
352.McElree, I.M., et al. Sequential Intravesical Valrubicin and Docetaxel for the Salvage Treatment of Non-Muscle-Invasive Bladder Cancer. J Urol, 2022: 101097ju0000000000002848.
https://pubmed.ncbi.nlm.nih.gov/35830552/
353.Steinberg, R.L., et al. Multi-Institution Evaluation of Sequential Gemcitabine and Docetaxel as Rescue Therapy for Nonmuscle Invasive Bladder Cancer. J Urol, 2020. 203: 902.
https://pubmed.ncbi.nlm.nih.gov/31821066/
354.Steinberg, R.L., et al. Intravesical sequential gemcitabine and docetaxel versus bacillus calmette-guerin (BCG) plus interferon in patients with recurrent non-muscle invasive bladder cancer following a single induction course of BCG. Urol Oncol, 2022. 40: 9 e1.
https://pubmed.ncbi.nlm.nih.gov/34092482/
355.McElree, I.M., et al. Sequential Intravesical Gemcitabine and Docetaxel for bacillus Calmette-Guérin-Naïve High-Risk Nonmuscle-Invasive Bladder Cancer. J Urol, 2022. 208: 589.
https://pubmed.ncbi.nlm.nih.gov/35892270/
356.Jakse, G., et al. Intravesical BCG in patients with carcinoma in situ of the urinary bladder: long-term results of EORTC GU Group phase II protocol 30861. Eur Urol, 2001. 40: 144.
https://pubmed.ncbi.nlm.nih.gov/11528191/
357.Sylvester, R.J., et al. Bacillus calmette-guerin versus chemotherapy for the intravesical treatment of patients with carcinoma in situ of the bladder: a meta-analysis of the published results of randomized clinical trials. J Urol, 2005. 174: 86.
https://pubmed.ncbi.nlm.nih.gov/15947584/
358.Kaasinen, E., et al. Seventeen-year follow-up of the prospective randomized Nordic CIS study: BCG monotherapy versus alternating therapy with mitomycin C and BCG in patients with carcinoma
in situ of the urinary bladder. Scand J Urol, 2016. 50: 360.
https://pubmed.ncbi.nlm.nih.gov/27603424/
359.Solsona, E., et al. Extravesical involvement in patients with bladder carcinoma in situ: biological and therapy implications. J Urol, 1996. 155: 895.
https://pubmed.ncbi.nlm.nih.gov/8583601/
360.Sylvester, R.J., et al. High-grade Ta urothelial carcinoma and carcinoma in situ of the bladder. Urology, 2005. 66: 90.
https://pubmed.ncbi.nlm.nih.gov/16399418/
361.Palou, J., et al. Urothelial carcinoma of the prostate. Urology, 2007. 69: 50.
https://pubmed.ncbi.nlm.nih.gov/17280908/
362.Palou Redorta, J., et al. Intravesical instillations with bacillus calmette-guerin for the treatment of carcinoma in situ involving prostatic ducts. Eur Urol, 2006. 49: 834.
https://pubmed.ncbi.nlm.nih.gov/16426729/
363.Popert, R.J., et al. Superficial bladder cancer: the response of a marker tumour to a single intravesical instillation of epirubicin. Br J Urol, 1994. 74: 195.
https://pubmed.ncbi.nlm.nih.gov/7921938/
364.Di Stasi, S.M., et al. Electromotive instillation of mitomycin immediately before transurethral resection for patients with primary urothelial non-muscle invasive bladder cancer: a randomised controlled trial. Lancet Oncol, 2011. 12: 871.
https://pubmed.ncbi.nlm.nih.gov/21831711/
365.Mostafid, A.H., et al. CALIBER: a phase II randomized feasibility trial of chemoablation with mitomycin-C vs surgical management in low-risk non-muscle-invasive bladder cancer. BJU Int, 2020. 125: 817.
https://pubmed.ncbi.nlm.nih.gov/32124514/
366.Lindgren, M.S., et al. The DaBlaCa-13 Study: Short-term, Intensive Chemoresection Versus Standard Adjuvant Intravesical Instillations in Non-muscle-invasive Bladder Cancer-A Randomised Controlled Trial. Eur Urol, 2020. 78: 856.
https://pubmed.ncbi.nlm.nih.gov/32736928/
367.Fritsche, H.M., et al. Characteristics and outcomes of patients with clinical T1 grade 3 urothelial carcinoma treated with radical cystectomy: results from an international cohort. Eur Urol, 2010.
57: 300.
https://pubmed.ncbi.nlm.nih.gov/19766384/
368.Turker, P., et al. Upstaging of urothelial cancer at the time of radical cystectomy: factors associated with upstaging and its effect on outcome. BJU Int, 2012. 110: 804.
https://pubmed.ncbi.nlm.nih.gov/22321341/
369.May, M., et al. Pathological upstaging detected in radical cystectomy procedures is associated with a significantly worse tumour-specific survival rate for patients with clinical T1 urothelial carcinoma of the urinary bladder. Scand J Urol Nephrol, 2011. 45: 251.
https://pubmed.ncbi.nlm.nih.gov/21388337/
370.Svatek, R.S., et al. Discrepancy between clinical and pathological stage: external validation of the impact on prognosis in an international radical cystectomy cohort. BJU Int, 2011. 107: 898.
https://pubmed.ncbi.nlm.nih.gov/21244604/
371.Shariat, S.F., et al. Discrepancy between clinical and pathologic stage: impact on prognosis after radical cystectomy. Eur Urol, 2007. 51: 137.
https://pubmed.ncbi.nlm.nih.gov/16793197/
372.Moschini, M., et al. Comparing long-term outcomes of primary and progressive carcinoma invading bladder muscle after radical cystectomy. BJU Int, 2016. 117: 604.
https://pubmed.ncbi.nlm.nih.gov/25851271/
373.Schrier, B.P., et al. Prognosis of muscle-invasive bladder cancer: difference between primary and progressive tumours and implications for therapy. Eur Urol, 2004. 45: 292.
https://pubmed.ncbi.nlm.nih.gov/15036673/
374.Kamat, A.M., et al. The case for early cystectomy in the treatment of nonmuscle invasive micropapillary bladder carcinoma. J Urol, 2006. 175: 881.
https://pubmed.ncbi.nlm.nih.gov/16469571/
375.Raj, G.V., et al. Treatment paradigm shift may improve survival of patients with high risk superficial bladder cancer. J Urol, 2007. 177: 1283.
https://pubmed.ncbi.nlm.nih.gov/17382713/
376.Stein, J.P., et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol, 2001. 19: 666.
https://pubmed.ncbi.nlm.nih.gov/11157016/
377.Hautmann, R.E., et al. Radical cystectomy for urothelial carcinoma of the bladder without neoadjuvant or adjuvant therapy: long-term results in 1100 patients. Eur Urol, 2012. 61: 1039.
https://pubmed.ncbi.nlm.nih.gov/22381169/
378.Shariat, S.F., et al. Outcomes of radical cystectomy for transitional cell carcinoma of the bladder: a contemporary series from the Bladder Cancer Research Consortium. J Urol, 2006. 176: 2414.
https://pubmed.ncbi.nlm.nih.gov/17085118/
379.Kurpad, R., et al. A multidisciplinary approach to the management of urologic malignancies: does it influence diagnostic and treatment decisions? Urol Oncol, 2011. 29: 378.
https://pubmed.ncbi.nlm.nih.gov/19576797/
380.Wayment, R.O., et al. Second opinion pathology in tertiary care of patients with urologic malignancies. Urol Oncol, 2011. 29: 194.
https://pubmed.ncbi.nlm.nih.gov/19523859/
381.Traboulsi, S.L., et al. Pathology review impacts clinical management of patients with T1-T2 bladder cancer. Can Urol Assoc J, 2017. 11: 188.
https://pubmed.ncbi.nlm.nih.gov/28652877/
382.Luchey, A.M., et al. Change in Management Based on Pathologic Second Opinion Among Bladder Cancer Patients Presenting to a Comprehensive Cancer Center: Implications for Clinical Practice. Urology, 2016. 93: 130.
https://pubmed.ncbi.nlm.nih.gov/27041469/
383.Herr, H.W., et al. BCG-refractory vs. BCG-relapsing non-muscle-invasive bladder cancer: a prospective cohort outcomes study. Urol Oncol, 2015. 33: 108.e1.
https://pubmed.ncbi.nlm.nih.gov/25813144/
384.Lerner, S.P., et al. Failure to achieve a complete response to induction BCG therapy is associated with increased risk of disease worsening and death in patients with high risk non-muscle invasive bladder cancer. Urol Oncol, 2009. 27: 155.
https://pubmed.ncbi.nlm.nih.gov/18367117/
385.Kamat, A.M., et al. Definitions, End Points, and Clinical Trial Designs for Non-Muscle-Invasive Bladder Cancer: Recommendations From the International Bladder Cancer Group. J Clin Oncol, 2016. 34: 1935.
https://pubmed.ncbi.nlm.nih.gov/26811532/
386.U.S. Food and Drug Administration (FDA). BCG-Unresponsive Nonmuscle Invasive Bladder Cancer: Developing Drugs and Biologics for Treatment. Guidance for Industry. Center for Drug Evaluation and Research (CDER). 2018. [access date December 2022].
https://www.fda.gov/media/101468/download
387.Herr, H.W., et al. Defining bacillus Calmette-Guerin refractory superficial bladder tumors. J Urol, 2003. 169: 1706.
https://pubmed.ncbi.nlm.nih.gov/12686813/
388.van den Bosch, S., et al. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: a systematic review. Eur Urol, 2011. 60: 493.
https://pubmed.ncbi.nlm.nih.gov/21664041/
389.Cockerill, P.A., et al. Intravesical gemcitabine in combination with mitomycin C as salvage treatment in recurrent non-muscle-invasive bladder cancer. BJU Int, 2016. 117: 456.
https://pubmed.ncbi.nlm.nih.gov/25682834/
390.Barlow, L., et al. A single-institution experience with induction and maintenance intravesical docetaxel in the management of non-muscle-invasive bladder cancer refractory to bacille Calmette-Guerin therapy. BJU Int, 2009. 104: 1098.
https://pubmed.ncbi.nlm.nih.gov/19389012/
391.Steinberg, G., et al. Efficacy and safety of valrubicin for the treatment of Bacillus Calmette-Guerin refractory carcinoma in situ of the bladder. The Valrubicin Study Group. J Urol, 2000. 163: 761.
https://pubmed.ncbi.nlm.nih.gov/10687972/
392.Jones, G., et al. Intravesical gemcitabine for non-muscle invasive bladder cancer. Cochrane Database Syst Rev, 2012. 1: CD009294.
https://pubmed.ncbi.nlm.nih.gov/22259002/
393.Nativ, O., et al. Combined thermo-chemotherapy for recurrent bladder cancer after bacillus Calmette-Guerin. J Urol, 2009. 182: 1313.
https://pubmed.ncbi.nlm.nih.gov/19683278/
394.Racioppi, M., et al. ElectroMotive drug administration (EMDA) of Mitomycin C as first-line salvage therapy in high risk “BCG failure” non muscle invasive bladder cancer: 3 years follow-up outcomes. BMC Cancer, 2018. 18: 1224.
https://pubmed.ncbi.nlm.nih.gov/30522445/
395.Tan, W.S., et al. Radiofrequency-induced Thermo-chemotherapy Effect Versus a Second Course of Bacillus Calmette-Guerin or Institutional Standard in Patients with Recurrence of Non-muscle-invasive Bladder Cancer Following Induction or Maintenance Bacillus Calmette-Guerin Therapy (HYMN): A Phase III, Open-label, Randomised Controlled Trial. Eur Urol, 2019. 75: 63.
https://pubmed.ncbi.nlm.nih.gov/30274699/
396.Morales, A., et al. Efficacy and safety of MCNA in patients with nonmuscle invasive bladder cancer at high risk for recurrence and progression after failed treatment with bacillus Calmette-Guerin.
J Urol, 2015. 193: 1135.
https://pubmed.ncbi.nlm.nih.gov/25286009/
397.Joudi, F.N., et al. Final results from a national multicenter phase II trial of combination bacillus Calmette-Guerin plus interferon alpha-2B for reducing recurrence of superficial bladder cancer. Urol Oncol, 2006. 24: 344.
https://pubmed.ncbi.nlm.nih.gov/16818189/
398.Wright, K.M. FDA Approves Pembrolizumab for BCG-Unresponsive NMIBC. Oncology (Williston Park), 2020. 34: 44.
https://pubmed.ncbi.nlm.nih.gov/32645193/
399.Shore, N.D., et al. Intravesical rAd-IFNalpha/Syn3 for Patients With High-Grade, Bacillus Calmette-Guerin-Refractory or Relapsed Non-Muscle-Invasive Bladder Cancer: A Phase II Randomized Study. J Clin Oncol, 2017. 35: 3410.
https://pubmed.ncbi.nlm.nih.gov/28834453/
400.Packiam, V.T., et al. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: Interim results. Urol Oncol, 2018. 36: 440.
https://pubmed.ncbi.nlm.nih.gov/28755959/
401.Hassler, M.R., et al. Salvage therapeutic strategies for bacillus Calmette-Guerin failure. Curr Opin Urol, 2019. 29: 239.
https://pubmed.ncbi.nlm.nih.gov/30762670/
402.Balar, A.V., et al. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study. Lancet Oncol, 2021. 22: 919.
https://pubmed.ncbi.nlm.nih.gov/34051177/
403.Boorjian, S.A., et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol, 2021. 22: 107.
https://pubmed.ncbi.nlm.nih.gov/33253641/
404.Mitra, A.P., et al. Antiadenovirus Antibodies Predict Response Durability to Nadofaragene Firadenovec Therapy in BCG-unresponsive Non-muscle-invasive Bladder Cancer: Secondary Analysis of a Phase 3 Clinical Trial. Eur Urol, 2022. 81: 223.
https://pubmed.ncbi.nlm.nih.gov/34933753/
405.Kamat, A.M., et al. Evidence-based Assessment of Current and Emerging Bladder-sparing Therapies for Non-muscle-invasive Bladder Cancer After Bacillus Calmette-Guerin Therapy: A Systematic Review and Meta-analysis. Eur Urol Oncol, 2020. 3: 318.
https://pubmed.ncbi.nlm.nih.gov/32201133/
406.Li, R., et al. Systematic Review of the Therapeutic Efficacy of Bladder-preserving Treatments for Non-muscle-invasive Bladder Cancer Following Intravesical Bacillus Calmette-Guérin. Eur Urol, 2020. 78: 387.
https://pubmed.ncbi.nlm.nih.gov/32143924/
407.Gallagher, B.L., et al. Impact of previous bacille Calmette-Guerin failure pattern on subsequent response to bacille Calmette-Guerin plus interferon intravesical therapy. Urology, 2008. 71: 297.
https://pubmed.ncbi.nlm.nih.gov/18308107/
408.Rosevear, H.M., et al. Factors affecting response to bacillus Calmette-Guerin plus interferon for urothelial carcinoma in situ. J Urol, 2011. 186: 817.
https://pubmed.ncbi.nlm.nih.gov/21788050/
409.Gofrit, O.N., et al. Watchful waiting policy in recurrent Ta G1 bladder tumors. Eur Urol, 2006. 49: 303.
https://pubmed.ncbi.nlm.nih.gov/16413659/
410.Herr, H.W., et al. Management of low grade papillary bladder tumors. J Urol, 2007. 178: 1201.
https://pubmed.ncbi.nlm.nih.gov/17698090/
411.Pruthi, R.S., et al. Conservative management of low risk superficial bladder tumors. J Urol, 2008. 179: 87.
https://pubmed.ncbi.nlm.nih.gov/17997444/
412.Hernandez, V., et al. Long-term oncological outcomes of an active surveillance program in recurrent low grade Ta bladder cancer. Urol Oncol, 2016. 34: 165 e19.
https://pubmed.ncbi.nlm.nih.gov/26687318/
413.Hurle, R., et al. Active Surveillance for Low Risk Nonmuscle Invasive Bladder Cancer: A Confirmatory and Resource Consumption Study from the BIAS Project. J Urol, 2018. 199: 401.
https://pubmed.ncbi.nlm.nih.gov/28847481/
414.Soukup, V., et al. Follow-up after surgical treatment of bladder cancer: a critical analysis of the literature. Eur Urol, 2012. 62: 290.
https://pubmed.ncbi.nlm.nih.gov/22609313/
415.Holmang, S., et al. Should follow-up cystoscopy in bacillus Calmette-Guerin-treated patients continue after five tumour-free years? Eur Urol, 2012. 61: 503.
https://pubmed.ncbi.nlm.nih.gov/22119022/
416.Lotan, Y., et al. Prospective evaluation of blue-light flexible cystoscopy with hexaminolevulinate in non-muscle-invasive bladder cancer. BJU Int, 2021. 127: 108.
https://pubmed.ncbi.nlm.nih.gov/32648957/
417.Chappidi, M.R., et al. Utility of Blue Light Cystoscopy for Post-bacillus Calmette-Guerin Bladder Cancer Recurrence Detection: Implications for Clinical Trial Recruitment and Study Comparisons. J Urol, 2022. 207: 534.
https://pubmed.ncbi.nlm.nih.gov/34694916/
418.Tschirdewahn, S., et al. Narrow-band imaging assisted cystoscopy in the follow-up of patients with transitional cell carcinoma of the bladder: a randomized study in comparison with white light cystoscopy. World J Urol, 2020. 38: 1509.
https://pubmed.ncbi.nlm.nih.gov/31471739/
419.Cowan, B., et al. Longitudinal follow-up and performance validation of an mRNA-based urine test (Xpert(®) Bladder Cancer Monitor ) for surveillance in patients with non-muscle-invasive bladder cancer. BJU Int, 2021. 128: 713.
https://pubmed.ncbi.nlm.nih.gov/33793062/
420.Fasulo, V., et al. Xpert Bladder Cancer Monitor May Avoid Cystoscopies in Patients Under “Active Surveillance” for Recurrent Bladder Cancer (BIAS Project): Longitudinal Cohort Study. Front Oncol, 2022. 12: 832835.
https://pubmed.ncbi.nlm.nih.gov/35155263/
421.Niwa, N., et al. Comparison of outcomes between ultrasonography and cystoscopy in the surveillance of patients with initially diagnosed TaG1-2 bladder cancers: A matched-pair analysis. Urol Oncol, 2015. 33: 386 e15.
https://pubmed.ncbi.nlm.nih.gov/26027764/
422.Pierconti, F., et al. The bladder epicheck test and cytology in the follow-up of patients with non-muscle-invasive high grade bladder carcinoma. Urol Oncol, 2022. 40: 108.e19.